doc-src/TutorialI/Sets/Examples.thy
changeset 35416 d8d7d1b785af
parent 32833 f3716d1a2e48
child 36745 403585a89772
equal deleted inserted replaced
35342:4dc65845eab3 35416:d8d7d1b785af
   154 by blast
   154 by blast
   155 
   155 
   156 lemma "{x. P x \<longrightarrow> Q x} = -{x. P x} \<union> {x. Q x}"
   156 lemma "{x. P x \<longrightarrow> Q x} = -{x. P x} \<union> {x. Q x}"
   157 by blast
   157 by blast
   158 
   158 
   159 constdefs
   159 definition prime :: "nat set" where
   160   prime   :: "nat set"
       
   161     "prime == {p. 1<p & (ALL m. m dvd p --> m=1 | m=p)}"
   160     "prime == {p. 1<p & (ALL m. m dvd p --> m=1 | m=p)}"
   162 
   161 
   163 lemma "{p*q | p q. p\<in>prime \<and> q\<in>prime} = 
   162 lemma "{p*q | p q. p\<in>prime \<and> q\<in>prime} = 
   164        {z. \<exists>p q. z = p*q \<and> p\<in>prime \<and> q\<in>prime}"
   163        {z. \<exists>p q. z = p*q \<and> p\<in>prime \<and> q\<in>prime}"
   165 by (rule refl)
   164 by (rule refl)