src/HOL/Limits.thy
changeset 63952 354808e9f44b
parent 63915 bab633745c7f
child 64267 b9a1486e79be
equal deleted inserted replaced
63950:cdc1e59aa513 63952:354808e9f44b
  2366 
  2366 
  2367 lemma LIM_less_bound:
  2367 lemma LIM_less_bound:
  2368   fixes f :: "real \<Rightarrow> real"
  2368   fixes f :: "real \<Rightarrow> real"
  2369   assumes ev: "b < x" "\<forall> x' \<in> { b <..< x}. 0 \<le> f x'" and "isCont f x"
  2369   assumes ev: "b < x" "\<forall> x' \<in> { b <..< x}. 0 \<le> f x'" and "isCont f x"
  2370   shows "0 \<le> f x"
  2370   shows "0 \<le> f x"
  2371 proof (rule tendsto_le_const)
  2371 proof (rule tendsto_lowerbound)
  2372   show "(f \<longlongrightarrow> f x) (at_left x)"
  2372   show "(f \<longlongrightarrow> f x) (at_left x)"
  2373     using \<open>isCont f x\<close> by (simp add: filterlim_at_split isCont_def)
  2373     using \<open>isCont f x\<close> by (simp add: filterlim_at_split isCont_def)
  2374   show "eventually (\<lambda>x. 0 \<le> f x) (at_left x)"
  2374   show "eventually (\<lambda>x. 0 \<le> f x) (at_left x)"
  2375     using ev by (auto simp: eventually_at dist_real_def intro!: exI[of _ "x - b"])
  2375     using ev by (auto simp: eventually_at dist_real_def intro!: exI[of _ "x - b"])
  2376 qed simp
  2376 qed simp