doc-src/TutorialI/CTL/CTLind.thy
changeset 10845 3696bc935bbd
parent 10795 9e888d60d3e5
child 10855 140a1ed65665
equal deleted inserted replaced
10844:0c0e7de7e9c5 10845:3696bc935bbd
   126 into a @{text"\<And>p"}, which would complicate matters below. As it is,
   126 into a @{text"\<And>p"}, which would complicate matters below. As it is,
   127 @{thm[source]Avoid_in_lfp} is now
   127 @{thm[source]Avoid_in_lfp} is now
   128 @{thm[display]Avoid_in_lfp[no_vars]}
   128 @{thm[display]Avoid_in_lfp[no_vars]}
   129 The main theorem is simply the corollary where @{prop"t = s"},
   129 The main theorem is simply the corollary where @{prop"t = s"},
   130 in which case the assumption @{prop"t \<in> Avoid s A"} is trivially true
   130 in which case the assumption @{prop"t \<in> Avoid s A"} is trivially true
   131 by the first @{term Avoid}-rule). Isabelle confirms this:
   131 by the first @{term Avoid}-rule. Isabelle confirms this:
   132 *}
   132 *}
   133 
   133 
   134 theorem AF_lemma2:
   134 theorem AF_lemma2:
   135   "{s. \<forall>p \<in> Paths s. \<exists> i. p i \<in> A} \<subseteq> lfp(af A)";
   135   "{s. \<forall>p \<in> Paths s. \<exists> i. p i \<in> A} \<subseteq> lfp(af A)";
   136 by(auto elim:Avoid_in_lfp intro:Avoid.intros);
   136 by(auto elim:Avoid_in_lfp intro:Avoid.intros);