src/HOL/BNF_Def.thy
changeset 58352 37745650a3f4
parent 58106 c8cba801c483
child 58446 e89f57d1e46c
equal deleted inserted replaced
58351:b3f7c69e9fcd 58352:37745650a3f4
    46    "\<lbrakk>rel_fun R1 (rel_fun R2 (op =)) P Q; a \<in> A; b \<in> B; A \<subseteq> {(x, y). R1 x y}; B \<subseteq> {(x, y). R2 x y}\<rbrakk> \<Longrightarrow>
    46    "\<lbrakk>rel_fun R1 (rel_fun R2 (op =)) P Q; a \<in> A; b \<in> B; A \<subseteq> {(x, y). R1 x y}; B \<subseteq> {(x, y). R2 x y}\<rbrakk> \<Longrightarrow>
    47    P (fst a) (fst b) \<longleftrightarrow> Q (snd a) (snd b)"
    47    P (fst a) (fst b) \<longleftrightarrow> Q (snd a) (snd b)"
    48   unfolding rel_fun_def by (blast dest!: Collect_splitD)
    48   unfolding rel_fun_def by (blast dest!: Collect_splitD)
    49 
    49 
    50 definition collect where
    50 definition collect where
    51 "collect F x = (\<Union>f \<in> F. f x)"
    51   "collect F x = (\<Union>f \<in> F. f x)"
    52 
    52 
    53 lemma fstI: "x = (y, z) \<Longrightarrow> fst x = y"
    53 lemma fstI: "x = (y, z) \<Longrightarrow> fst x = y"
    54 by simp
    54   by simp
    55 
    55 
    56 lemma sndI: "x = (y, z) \<Longrightarrow> snd x = z"
    56 lemma sndI: "x = (y, z) \<Longrightarrow> snd x = z"
    57 by simp
    57   by simp
    58 
    58 
    59 lemma bijI': "\<lbrakk>\<And>x y. (f x = f y) = (x = y); \<And>y. \<exists>x. y = f x\<rbrakk> \<Longrightarrow> bij f"
    59 lemma bijI': "\<lbrakk>\<And>x y. (f x = f y) = (x = y); \<And>y. \<exists>x. y = f x\<rbrakk> \<Longrightarrow> bij f"
    60 unfolding bij_def inj_on_def by auto blast
    60   unfolding bij_def inj_on_def by auto blast
    61 
    61 
    62 (* Operator: *)
    62 (* Operator: *)
    63 definition "Gr A f = {(a, f a) | a. a \<in> A}"
    63 definition "Gr A f = {(a, f a) | a. a \<in> A}"
    64 
    64 
    65 definition "Grp A f = (\<lambda>a b. b = f a \<and> a \<in> A)"
    65 definition "Grp A f = (\<lambda>a b. b = f a \<and> a \<in> A)"
    69 
    69 
    70 lemma collect_comp: "collect F \<circ> g = collect ((\<lambda>f. f \<circ> g) ` F)"
    70 lemma collect_comp: "collect F \<circ> g = collect ((\<lambda>f. f \<circ> g) ` F)"
    71   by (rule ext) (auto simp only: comp_apply collect_def)
    71   by (rule ext) (auto simp only: comp_apply collect_def)
    72 
    72 
    73 definition convol ("\<langle>(_,/ _)\<rangle>") where
    73 definition convol ("\<langle>(_,/ _)\<rangle>") where
    74 "\<langle>f, g\<rangle> \<equiv> \<lambda>a. (f a, g a)"
    74   "\<langle>f, g\<rangle> \<equiv> \<lambda>a. (f a, g a)"
    75 
    75 
    76 lemma fst_convol:
    76 lemma fst_convol: "fst \<circ> \<langle>f, g\<rangle> = f"
    77 "fst \<circ> \<langle>f, g\<rangle> = f"
    77   apply(rule ext)
    78 apply(rule ext)
    78   unfolding convol_def by simp
    79 unfolding convol_def by simp
    79 
    80 
    80 lemma snd_convol: "snd \<circ> \<langle>f, g\<rangle> = g"
    81 lemma snd_convol:
    81   apply(rule ext)
    82 "snd \<circ> \<langle>f, g\<rangle> = g"
    82   unfolding convol_def by simp
    83 apply(rule ext)
       
    84 unfolding convol_def by simp
       
    85 
    83 
    86 lemma convol_mem_GrpI:
    84 lemma convol_mem_GrpI:
    87 "x \<in> A \<Longrightarrow> \<langle>id, g\<rangle> x \<in> (Collect (split (Grp A g)))"
    85   "x \<in> A \<Longrightarrow> \<langle>id, g\<rangle> x \<in> (Collect (split (Grp A g)))"
    88 unfolding convol_def Grp_def by auto
    86   unfolding convol_def Grp_def by auto
    89 
    87 
    90 definition csquare where
    88 definition csquare where
    91 "csquare A f1 f2 p1 p2 \<longleftrightarrow> (\<forall> a \<in> A. f1 (p1 a) = f2 (p2 a))"
    89   "csquare A f1 f2 p1 p2 \<longleftrightarrow> (\<forall> a \<in> A. f1 (p1 a) = f2 (p2 a))"
    92 
    90 
    93 lemma eq_alt: "op = = Grp UNIV id"
    91 lemma eq_alt: "op = = Grp UNIV id"
    94 unfolding Grp_def by auto
    92   unfolding Grp_def by auto
    95 
    93 
    96 lemma leq_conversepI: "R = op = \<Longrightarrow> R \<le> R^--1"
    94 lemma leq_conversepI: "R = op = \<Longrightarrow> R \<le> R^--1"
    97   by auto
    95   by auto
    98 
    96 
    99 lemma leq_OOI: "R = op = \<Longrightarrow> R \<le> R OO R"
    97 lemma leq_OOI: "R = op = \<Longrightarrow> R \<le> R OO R"
   101 
    99 
   102 lemma OO_Grp_alt: "(Grp A f)^--1 OO Grp A g = (\<lambda>x y. \<exists>z. z \<in> A \<and> f z = x \<and> g z = y)"
   100 lemma OO_Grp_alt: "(Grp A f)^--1 OO Grp A g = (\<lambda>x y. \<exists>z. z \<in> A \<and> f z = x \<and> g z = y)"
   103   unfolding Grp_def by auto
   101   unfolding Grp_def by auto
   104 
   102 
   105 lemma Grp_UNIV_id: "f = id \<Longrightarrow> (Grp UNIV f)^--1 OO Grp UNIV f = Grp UNIV f"
   103 lemma Grp_UNIV_id: "f = id \<Longrightarrow> (Grp UNIV f)^--1 OO Grp UNIV f = Grp UNIV f"
   106 unfolding Grp_def by auto
   104   unfolding Grp_def by auto
   107 
   105 
   108 lemma Grp_UNIV_idI: "x = y \<Longrightarrow> Grp UNIV id x y"
   106 lemma Grp_UNIV_idI: "x = y \<Longrightarrow> Grp UNIV id x y"
   109 unfolding Grp_def by auto
   107   unfolding Grp_def by auto
   110 
   108 
   111 lemma Grp_mono: "A \<le> B \<Longrightarrow> Grp A f \<le> Grp B f"
   109 lemma Grp_mono: "A \<le> B \<Longrightarrow> Grp A f \<le> Grp B f"
   112 unfolding Grp_def by auto
   110   unfolding Grp_def by auto
   113 
   111 
   114 lemma GrpI: "\<lbrakk>f x = y; x \<in> A\<rbrakk> \<Longrightarrow> Grp A f x y"
   112 lemma GrpI: "\<lbrakk>f x = y; x \<in> A\<rbrakk> \<Longrightarrow> Grp A f x y"
   115 unfolding Grp_def by auto
   113   unfolding Grp_def by auto
   116 
   114 
   117 lemma GrpE: "Grp A f x y \<Longrightarrow> (\<lbrakk>f x = y; x \<in> A\<rbrakk> \<Longrightarrow> R) \<Longrightarrow> R"
   115 lemma GrpE: "Grp A f x y \<Longrightarrow> (\<lbrakk>f x = y; x \<in> A\<rbrakk> \<Longrightarrow> R) \<Longrightarrow> R"
   118 unfolding Grp_def by auto
   116   unfolding Grp_def by auto
   119 
   117 
   120 lemma Collect_split_Grp_eqD: "z \<in> Collect (split (Grp A f)) \<Longrightarrow> (f \<circ> fst) z = snd z"
   118 lemma Collect_split_Grp_eqD: "z \<in> Collect (split (Grp A f)) \<Longrightarrow> (f \<circ> fst) z = snd z"
   121 unfolding Grp_def comp_def by auto
   119   unfolding Grp_def comp_def by auto
   122 
   120 
   123 lemma Collect_split_Grp_inD: "z \<in> Collect (split (Grp A f)) \<Longrightarrow> fst z \<in> A"
   121 lemma Collect_split_Grp_inD: "z \<in> Collect (split (Grp A f)) \<Longrightarrow> fst z \<in> A"
   124 unfolding Grp_def comp_def by auto
   122   unfolding Grp_def comp_def by auto
   125 
   123 
   126 definition "pick_middlep P Q a c = (SOME b. P a b \<and> Q b c)"
   124 definition "pick_middlep P Q a c = (SOME b. P a b \<and> Q b c)"
   127 
   125 
   128 lemma pick_middlep:
   126 lemma pick_middlep:
   129 "(P OO Q) a c \<Longrightarrow> P a (pick_middlep P Q a c) \<and> Q (pick_middlep P Q a c) c"
   127   "(P OO Q) a c \<Longrightarrow> P a (pick_middlep P Q a c) \<and> Q (pick_middlep P Q a c) c"
   130 unfolding pick_middlep_def apply(rule someI_ex) by auto
   128   unfolding pick_middlep_def apply(rule someI_ex) by auto
   131 
   129 
   132 definition fstOp where "fstOp P Q ac = (fst ac, pick_middlep P Q (fst ac) (snd ac))"
   130 definition fstOp where
   133 definition sndOp where "sndOp P Q ac = (pick_middlep P Q (fst ac) (snd ac), (snd ac))"
   131   "fstOp P Q ac = (fst ac, pick_middlep P Q (fst ac) (snd ac))"
       
   132 
       
   133 definition sndOp where
       
   134   "sndOp P Q ac = (pick_middlep P Q (fst ac) (snd ac), (snd ac))"
   134 
   135 
   135 lemma fstOp_in: "ac \<in> Collect (split (P OO Q)) \<Longrightarrow> fstOp P Q ac \<in> Collect (split P)"
   136 lemma fstOp_in: "ac \<in> Collect (split (P OO Q)) \<Longrightarrow> fstOp P Q ac \<in> Collect (split P)"
   136 unfolding fstOp_def mem_Collect_eq
   137   unfolding fstOp_def mem_Collect_eq
   137 by (subst (asm) surjective_pairing, unfold prod.case) (erule pick_middlep[THEN conjunct1])
   138   by (subst (asm) surjective_pairing, unfold prod.case) (erule pick_middlep[THEN conjunct1])
   138 
   139 
   139 lemma fst_fstOp: "fst bc = (fst \<circ> fstOp P Q) bc"
   140 lemma fst_fstOp: "fst bc = (fst \<circ> fstOp P Q) bc"
   140 unfolding comp_def fstOp_def by simp
   141   unfolding comp_def fstOp_def by simp
   141 
   142 
   142 lemma snd_sndOp: "snd bc = (snd \<circ> sndOp P Q) bc"
   143 lemma snd_sndOp: "snd bc = (snd \<circ> sndOp P Q) bc"
   143 unfolding comp_def sndOp_def by simp
   144   unfolding comp_def sndOp_def by simp
   144 
   145 
   145 lemma sndOp_in: "ac \<in> Collect (split (P OO Q)) \<Longrightarrow> sndOp P Q ac \<in> Collect (split Q)"
   146 lemma sndOp_in: "ac \<in> Collect (split (P OO Q)) \<Longrightarrow> sndOp P Q ac \<in> Collect (split Q)"
   146 unfolding sndOp_def mem_Collect_eq
   147   unfolding sndOp_def mem_Collect_eq
   147 by (subst (asm) surjective_pairing, unfold prod.case) (erule pick_middlep[THEN conjunct2])
   148   by (subst (asm) surjective_pairing, unfold prod.case) (erule pick_middlep[THEN conjunct2])
   148 
   149 
   149 lemma csquare_fstOp_sndOp:
   150 lemma csquare_fstOp_sndOp:
   150 "csquare (Collect (split (P OO Q))) snd fst (fstOp P Q) (sndOp P Q)"
   151   "csquare (Collect (split (P OO Q))) snd fst (fstOp P Q) (sndOp P Q)"
   151 unfolding csquare_def fstOp_def sndOp_def using pick_middlep by simp
   152   unfolding csquare_def fstOp_def sndOp_def using pick_middlep by simp
   152 
   153 
   153 lemma snd_fst_flip: "snd xy = (fst \<circ> (%(x, y). (y, x))) xy"
   154 lemma snd_fst_flip: "snd xy = (fst \<circ> (%(x, y). (y, x))) xy"
   154 by (simp split: prod.split)
   155   by (simp split: prod.split)
   155 
   156 
   156 lemma fst_snd_flip: "fst xy = (snd \<circ> (%(x, y). (y, x))) xy"
   157 lemma fst_snd_flip: "fst xy = (snd \<circ> (%(x, y). (y, x))) xy"
   157 by (simp split: prod.split)
   158   by (simp split: prod.split)
   158 
   159 
   159 lemma flip_pred: "A \<subseteq> Collect (split (R ^--1)) \<Longrightarrow> (%(x, y). (y, x)) ` A \<subseteq> Collect (split R)"
   160 lemma flip_pred: "A \<subseteq> Collect (split (R ^--1)) \<Longrightarrow> (%(x, y). (y, x)) ` A \<subseteq> Collect (split R)"
   160 by auto
   161   by auto
   161 
   162 
   162 lemma Collect_split_mono: "A \<le> B \<Longrightarrow> Collect (split A) \<subseteq> Collect (split B)"
   163 lemma Collect_split_mono: "A \<le> B \<Longrightarrow> Collect (split A) \<subseteq> Collect (split B)"
   163   by auto
   164   by auto
   164 
   165 
   165 lemma Collect_split_mono_strong: 
   166 lemma Collect_split_mono_strong: 
   166   "\<lbrakk>X = fst ` A; Y = snd ` A; \<forall>a\<in>X. \<forall>b \<in> Y. P a b \<longrightarrow> Q a b; A \<subseteq> Collect (split P)\<rbrakk> \<Longrightarrow>
   167   "\<lbrakk>X = fst ` A; Y = snd ` A; \<forall>a\<in>X. \<forall>b \<in> Y. P a b \<longrightarrow> Q a b; A \<subseteq> Collect (split P)\<rbrakk> \<Longrightarrow>
   167   A \<subseteq> Collect (split Q)"
   168    A \<subseteq> Collect (split Q)"
   168   by fastforce
   169   by fastforce
   169 
   170 
   170 
   171 
   171 lemma predicate2_eqD: "A = B \<Longrightarrow> A a b \<longleftrightarrow> B a b"
   172 lemma predicate2_eqD: "A = B \<Longrightarrow> A a b \<longleftrightarrow> B a b"
   172 by simp
   173   by simp
   173 
   174 
   174 lemma case_sum_o_inj:
   175 lemma case_sum_o_inj: "case_sum f g \<circ> Inl = f" "case_sum f g \<circ> Inr = g"
   175 "case_sum f g \<circ> Inl = f"
   176   by auto
   176 "case_sum f g \<circ> Inr = g"
   177 
   177 by auto
   178 lemma map_sum_o_inj: "map_sum f g o Inl = Inl o f" "map_sum f g o Inr = Inr o g"
   178 
   179   by auto
   179 lemma map_sum_o_inj:
       
   180 "map_sum f g o Inl = Inl o f"
       
   181 "map_sum f g o Inr = Inr o g"
       
   182 by auto
       
   183 
   180 
   184 lemma card_order_csum_cone_cexp_def:
   181 lemma card_order_csum_cone_cexp_def:
   185   "card_order r \<Longrightarrow> ( |A1| +c cone) ^c r = |Func UNIV (Inl ` A1 \<union> {Inr ()})|"
   182   "card_order r \<Longrightarrow> ( |A1| +c cone) ^c r = |Func UNIV (Inl ` A1 \<union> {Inr ()})|"
   186   unfolding cexp_def cone_def Field_csum Field_card_of by (auto dest: Field_card_order)
   183   unfolding cexp_def cone_def Field_csum Field_card_of by (auto dest: Field_card_order)
   187 
   184 
   188 lemma If_the_inv_into_in_Func:
   185 lemma If_the_inv_into_in_Func:
   189   "\<lbrakk>inj_on g C; C \<subseteq> B \<union> {x}\<rbrakk> \<Longrightarrow>
   186   "\<lbrakk>inj_on g C; C \<subseteq> B \<union> {x}\<rbrakk> \<Longrightarrow>
   190   (\<lambda>i. if i \<in> g ` C then the_inv_into C g i else x) \<in> Func UNIV (B \<union> {x})"
   187    (\<lambda>i. if i \<in> g ` C then the_inv_into C g i else x) \<in> Func UNIV (B \<union> {x})"
   191 unfolding Func_def by (auto dest: the_inv_into_into)
   188   unfolding Func_def by (auto dest: the_inv_into_into)
   192 
   189 
   193 lemma If_the_inv_into_f_f:
   190 lemma If_the_inv_into_f_f:
   194   "\<lbrakk>i \<in> C; inj_on g C\<rbrakk> \<Longrightarrow>
   191   "\<lbrakk>i \<in> C; inj_on g C\<rbrakk> \<Longrightarrow> ((\<lambda>i. if i \<in> g ` C then the_inv_into C g i else x) \<circ> g) i = id i"
   195   ((\<lambda>i. if i \<in> g ` C then the_inv_into C g i else x) \<circ> g) i = id i"
   192   unfolding Func_def by (auto elim: the_inv_into_f_f)
   196 unfolding Func_def by (auto elim: the_inv_into_f_f)
       
   197 
   193 
   198 lemma the_inv_f_o_f_id: "inj f \<Longrightarrow> (the_inv f \<circ> f) z = id z"
   194 lemma the_inv_f_o_f_id: "inj f \<Longrightarrow> (the_inv f \<circ> f) z = id z"
   199   by (simp add: the_inv_f_f)
   195   by (simp add: the_inv_f_f)
   200 
   196 
   201 lemma vimage2pI: "R (f x) (g y) \<Longrightarrow> vimage2p f g R x y"
   197 lemma vimage2pI: "R (f x) (g y) \<Longrightarrow> vimage2p f g R x y"
   210 lemma vimage2p_Grp: "vimage2p f g P = Grp UNIV f OO P OO (Grp UNIV g)\<inverse>\<inverse>"
   206 lemma vimage2p_Grp: "vimage2p f g P = Grp UNIV f OO P OO (Grp UNIV g)\<inverse>\<inverse>"
   211   unfolding vimage2p_def Grp_def by auto
   207   unfolding vimage2p_def Grp_def by auto
   212 
   208 
   213 lemma subst_Pair: "P x y \<Longrightarrow> a = (x, y) \<Longrightarrow> P (fst a) (snd a)"
   209 lemma subst_Pair: "P x y \<Longrightarrow> a = (x, y) \<Longrightarrow> P (fst a) (snd a)"
   214   by simp
   210   by simp
       
   211 
       
   212 lemma comp_apply_eq: "f (g x) = h (k x) \<Longrightarrow> (f \<circ> g) x = (h \<circ> k) x"
       
   213   unfolding comp_apply by assumption
   215 
   214 
   216 ML_file "Tools/BNF/bnf_util.ML"
   215 ML_file "Tools/BNF/bnf_util.ML"
   217 ML_file "Tools/BNF/bnf_tactics.ML"
   216 ML_file "Tools/BNF/bnf_tactics.ML"
   218 ML_file "Tools/BNF/bnf_def_tactics.ML"
   217 ML_file "Tools/BNF/bnf_def_tactics.ML"
   219 ML_file "Tools/BNF/bnf_def.ML"
   218 ML_file "Tools/BNF/bnf_def.ML"