src/HOL/Filter.thy
changeset 77275 386b1b33785c
parent 77223 607e1e345e8f
child 77943 ffdad62bc235
equal deleted inserted replaced
77274:05ad117ee3fb 77275:386b1b33785c
  1509 
  1509 
  1510 lemma filterlim_at_bot_lt:
  1510 lemma filterlim_at_bot_lt:
  1511   fixes f :: "'a \<Rightarrow> ('b::unbounded_dense_linorder)" and c :: "'b"
  1511   fixes f :: "'a \<Rightarrow> ('b::unbounded_dense_linorder)" and c :: "'b"
  1512   shows "(LIM x F. f x :> at_bot) \<longleftrightarrow> (\<forall>Z<c. eventually (\<lambda>x. Z \<ge> f x) F)"
  1512   shows "(LIM x F. f x :> at_bot) \<longleftrightarrow> (\<forall>Z<c. eventually (\<lambda>x. Z \<ge> f x) F)"
  1513   by (metis filterlim_at_bot filterlim_at_bot_le lt_ex order_le_less_trans)
  1513   by (metis filterlim_at_bot filterlim_at_bot_le lt_ex order_le_less_trans)
  1514     
  1514 
       
  1515 lemma filterlim_at_top_div_const_nat:
       
  1516   assumes "c > 0"
       
  1517   shows   "filterlim (\<lambda>x::nat. x div c) at_top at_top"
       
  1518   unfolding filterlim_at_top
       
  1519 proof
       
  1520   fix C :: nat
       
  1521   have *: "n div c \<ge> C" if "n \<ge> C * c" for n
       
  1522     using assms that by (metis div_le_mono div_mult_self_is_m)
       
  1523   have "eventually (\<lambda>n. n \<ge> C * c) at_top"
       
  1524     by (rule eventually_ge_at_top)
       
  1525   thus "eventually (\<lambda>n. n div c \<ge> C) at_top"
       
  1526     by eventually_elim (use * in auto)
       
  1527 qed
       
  1528 
  1515 lemma filterlim_finite_subsets_at_top:
  1529 lemma filterlim_finite_subsets_at_top:
  1516   "filterlim f (finite_subsets_at_top A) F \<longleftrightarrow>
  1530   "filterlim f (finite_subsets_at_top A) F \<longleftrightarrow>
  1517      (\<forall>X. finite X \<and> X \<subseteq> A \<longrightarrow> eventually (\<lambda>y. finite (f y) \<and> X \<subseteq> f y \<and> f y \<subseteq> A) F)"
  1531      (\<forall>X. finite X \<and> X \<subseteq> A \<longrightarrow> eventually (\<lambda>y. finite (f y) \<and> X \<subseteq> f y \<and> f y \<subseteq> A) F)"
  1518   (is "?lhs = ?rhs")
  1532   (is "?lhs = ?rhs")
  1519 proof 
  1533 proof