src/HOL/Isar_examples/MutilatedCheckerboard.thy
changeset 11704 3c50a2cd6f00
parent 11701 3d51fbf81c17
child 11987 bf31b35949ce
equal deleted inserted replaced
11703:6e5de8d4290a 11704:3c50a2cd6f00
    74 lemma Sigma_Suc1:
    74 lemma Sigma_Suc1:
    75     "m = n + 1 ==> below m <*> B = ({n} <*> B) Un (below n <*> B)"
    75     "m = n + 1 ==> below m <*> B = ({n} <*> B) Un (below n <*> B)"
    76   by (simp add: below_def less_Suc_eq) blast
    76   by (simp add: below_def less_Suc_eq) blast
    77 
    77 
    78 lemma Sigma_Suc2:
    78 lemma Sigma_Suc2:
    79     "m = n + # 2 ==> A <*> below m =
    79     "m = n + 2 ==> A <*> below m =
    80       (A <*> {n}) Un (A <*> {n + 1}) Un (A <*> below n)"
    80       (A <*> {n}) Un (A <*> {n + 1}) Un (A <*> below n)"
    81   by (auto simp add: below_def) arith
    81   by (auto simp add: below_def) arith
    82 
    82 
    83 lemmas Sigma_Suc = Sigma_Suc1 Sigma_Suc2
    83 lemmas Sigma_Suc = Sigma_Suc1 Sigma_Suc2
    84 
    84 
    85 
    85 
    86 subsection {* Basic properties of ``evnodd'' *}
    86 subsection {* Basic properties of ``evnodd'' *}
    87 
    87 
    88 constdefs
    88 constdefs
    89   evnodd :: "(nat * nat) set => nat => (nat * nat) set"
    89   evnodd :: "(nat * nat) set => nat => (nat * nat) set"
    90   "evnodd A b == A Int {(i, j). (i + j) mod # 2 = b}"
    90   "evnodd A b == A Int {(i, j). (i + j) mod 2 = b}"
    91 
    91 
    92 lemma evnodd_iff:
    92 lemma evnodd_iff:
    93     "(i, j): evnodd A b = ((i, j): A  & (i + j) mod # 2 = b)"
    93     "(i, j): evnodd A b = ((i, j): A  & (i + j) mod 2 = b)"
    94   by (simp add: evnodd_def)
    94   by (simp add: evnodd_def)
    95 
    95 
    96 lemma evnodd_subset: "evnodd A b <= A"
    96 lemma evnodd_subset: "evnodd A b <= A"
    97   by (unfold evnodd_def, rule Int_lower1)
    97   by (unfold evnodd_def, rule Int_lower1)
    98 
    98 
   110 
   110 
   111 lemma evnodd_empty: "evnodd {} b = {}"
   111 lemma evnodd_empty: "evnodd {} b = {}"
   112   by (simp add: evnodd_def)
   112   by (simp add: evnodd_def)
   113 
   113 
   114 lemma evnodd_insert: "evnodd (insert (i, j) C) b =
   114 lemma evnodd_insert: "evnodd (insert (i, j) C) b =
   115     (if (i + j) mod # 2 = b
   115     (if (i + j) mod 2 = b
   116       then insert (i, j) (evnodd C b) else evnodd C b)"
   116       then insert (i, j) (evnodd C b) else evnodd C b)"
   117   by (simp add: evnodd_def) blast
   117   by (simp add: evnodd_def) blast
   118 
   118 
   119 
   119 
   120 subsection {* Dominoes *}
   120 subsection {* Dominoes *}
   126   intros
   126   intros
   127     horiz: "{(i, j), (i, j + 1)} : domino"
   127     horiz: "{(i, j), (i, j + 1)} : domino"
   128     vertl: "{(i, j), (i + 1, j)} : domino"
   128     vertl: "{(i, j), (i + 1, j)} : domino"
   129 
   129 
   130 lemma dominoes_tile_row:
   130 lemma dominoes_tile_row:
   131   "{i} <*> below (# 2 * n) : tiling domino"
   131   "{i} <*> below (2 * n) : tiling domino"
   132   (is "?P n" is "?B n : ?T")
   132   (is "?P n" is "?B n : ?T")
   133 proof (induct n)
   133 proof (induct n)
   134   show "?P 0" by (simp add: below_0 tiling.empty)
   134   show "?P 0" by (simp add: below_0 tiling.empty)
   135 
   135 
   136   fix n assume hyp: "?P n"
   136   fix n assume hyp: "?P n"
   137   let ?a = "{i} <*> {# 2 * n + 1} Un {i} <*> {# 2 * n}"
   137   let ?a = "{i} <*> {2 * n + 1} Un {i} <*> {2 * n}"
   138 
   138 
   139   have "?B (Suc n) = ?a Un ?B n"
   139   have "?B (Suc n) = ?a Un ?B n"
   140     by (auto simp add: Sigma_Suc Un_assoc)
   140     by (auto simp add: Sigma_Suc Un_assoc)
   141   also have "... : ?T"
   141   also have "... : ?T"
   142   proof (rule tiling.Un)
   142   proof (rule tiling.Un)
   143     have "{(i, # 2 * n), (i, # 2 * n + 1)} : domino"
   143     have "{(i, 2 * n), (i, 2 * n + 1)} : domino"
   144       by (rule domino.horiz)
   144       by (rule domino.horiz)
   145     also have "{(i, # 2 * n), (i, # 2 * n + 1)} = ?a" by blast
   145     also have "{(i, 2 * n), (i, 2 * n + 1)} = ?a" by blast
   146     finally show "... : domino" .
   146     finally show "... : domino" .
   147     from hyp show "?B n : ?T" .
   147     from hyp show "?B n : ?T" .
   148     show "?a <= - ?B n" by blast
   148     show "?a <= - ?B n" by blast
   149   qed
   149   qed
   150   finally show "?P (Suc n)" .
   150   finally show "?P (Suc n)" .
   151 qed
   151 qed
   152 
   152 
   153 lemma dominoes_tile_matrix:
   153 lemma dominoes_tile_matrix:
   154   "below m <*> below (# 2 * n) : tiling domino"
   154   "below m <*> below (2 * n) : tiling domino"
   155   (is "?P m" is "?B m : ?T")
   155   (is "?P m" is "?B m : ?T")
   156 proof (induct m)
   156 proof (induct m)
   157   show "?P 0" by (simp add: below_0 tiling.empty)
   157   show "?P 0" by (simp add: below_0 tiling.empty)
   158 
   158 
   159   fix m assume hyp: "?P m"
   159   fix m assume hyp: "?P m"
   160   let ?t = "{m} <*> below (# 2 * n)"
   160   let ?t = "{m} <*> below (2 * n)"
   161 
   161 
   162   have "?B (Suc m) = ?t Un ?B m" by (simp add: Sigma_Suc)
   162   have "?B (Suc m) = ?t Un ?B m" by (simp add: Sigma_Suc)
   163   also have "... : ?T"
   163   also have "... : ?T"
   164   proof (rule tiling_Un)
   164   proof (rule tiling_Un)
   165     show "?t : ?T" by (rule dominoes_tile_row)
   165     show "?t : ?T" by (rule dominoes_tile_row)
   168   qed
   168   qed
   169   finally show "?P (Suc m)" .
   169   finally show "?P (Suc m)" .
   170 qed
   170 qed
   171 
   171 
   172 lemma domino_singleton:
   172 lemma domino_singleton:
   173   "d : domino ==> b < # 2 ==> EX i j. evnodd d b = {(i, j)}"
   173   "d : domino ==> b < 2 ==> EX i j. evnodd d b = {(i, j)}"
   174 proof -
   174 proof -
   175   assume b: "b < # 2"
   175   assume b: "b < 2"
   176   assume "d : domino"
   176   assume "d : domino"
   177   thus ?thesis (is "?P d")
   177   thus ?thesis (is "?P d")
   178   proof induct
   178   proof induct
   179     from b have b_cases: "b = 0 | b = 1" by arith
   179     from b have b_cases: "b = 0 | b = 1" by arith
   180     fix i j
   180     fix i j
   225     assume "a : domino" and "t : ?T"
   225     assume "a : domino" and "t : ?T"
   226       and hyp: "card (?e t 0) = card (?e t 1)"
   226       and hyp: "card (?e t 0) = card (?e t 1)"
   227       and at: "a <= - t"
   227       and at: "a <= - t"
   228 
   228 
   229     have card_suc:
   229     have card_suc:
   230       "!!b. b < # 2 ==> card (?e (a Un t) b) = Suc (card (?e t b))"
   230       "!!b. b < 2 ==> card (?e (a Un t) b) = Suc (card (?e t b))"
   231     proof -
   231     proof -
   232       fix b :: nat assume "b < # 2"
   232       fix b :: nat assume "b < 2"
   233       have "?e (a Un t) b = ?e a b Un ?e t b" by (rule evnodd_Un)
   233       have "?e (a Un t) b = ?e a b Un ?e t b" by (rule evnodd_Un)
   234       also obtain i j where e: "?e a b = {(i, j)}"
   234       also obtain i j where e: "?e a b = {(i, j)}"
   235       proof -
   235       proof -
   236         have "EX i j. ?e a b = {(i, j)}" by (rule domino_singleton)
   236         have "EX i j. ?e a b = {(i, j)}" by (rule domino_singleton)
   237         thus ?thesis by (blast intro: that)
   237         thus ?thesis by (blast intro: that)
   258 subsection {* Main theorem *}
   258 subsection {* Main theorem *}
   259 
   259 
   260 constdefs
   260 constdefs
   261   mutilated_board :: "nat => nat => (nat * nat) set"
   261   mutilated_board :: "nat => nat => (nat * nat) set"
   262   "mutilated_board m n ==
   262   "mutilated_board m n ==
   263     below (# 2 * (m + 1)) <*> below (# 2 * (n + 1))
   263     below (2 * (m + 1)) <*> below (2 * (n + 1))
   264       - {(0, 0)} - {(# 2 * m + 1, # 2 * n + 1)}"
   264       - {(0, 0)} - {(2 * m + 1, 2 * n + 1)}"
   265 
   265 
   266 theorem mutil_not_tiling: "mutilated_board m n ~: tiling domino"
   266 theorem mutil_not_tiling: "mutilated_board m n ~: tiling domino"
   267 proof (unfold mutilated_board_def)
   267 proof (unfold mutilated_board_def)
   268   let ?T = "tiling domino"
   268   let ?T = "tiling domino"
   269   let ?t = "below (# 2 * (m + 1)) <*> below (# 2 * (n + 1))"
   269   let ?t = "below (2 * (m + 1)) <*> below (2 * (n + 1))"
   270   let ?t' = "?t - {(0, 0)}"
   270   let ?t' = "?t - {(0, 0)}"
   271   let ?t'' = "?t' - {(# 2 * m + 1, # 2 * n + 1)}"
   271   let ?t'' = "?t' - {(2 * m + 1, 2 * n + 1)}"
   272 
   272 
   273   show "?t'' ~: ?T"
   273   show "?t'' ~: ?T"
   274   proof
   274   proof
   275     have t: "?t : ?T" by (rule dominoes_tile_matrix)
   275     have t: "?t : ?T" by (rule dominoes_tile_matrix)
   276     assume t'': "?t'' : ?T"
   276     assume t'': "?t'' : ?T"
   280       by (rule evnodd_finite, rule tiling_domino_finite, rule t)
   280       by (rule evnodd_finite, rule tiling_domino_finite, rule t)
   281 
   281 
   282     note [simp] = evnodd_iff evnodd_empty evnodd_insert evnodd_Diff
   282     note [simp] = evnodd_iff evnodd_empty evnodd_insert evnodd_Diff
   283     have "card (?e ?t'' 0) < card (?e ?t' 0)"
   283     have "card (?e ?t'' 0) < card (?e ?t' 0)"
   284     proof -
   284     proof -
   285       have "card (?e ?t' 0 - {(# 2 * m + 1, # 2 * n + 1)})
   285       have "card (?e ?t' 0 - {(2 * m + 1, 2 * n + 1)})
   286         < card (?e ?t' 0)"
   286         < card (?e ?t' 0)"
   287       proof (rule card_Diff1_less)
   287       proof (rule card_Diff1_less)
   288         from _ fin show "finite (?e ?t' 0)"
   288         from _ fin show "finite (?e ?t' 0)"
   289           by (rule finite_subset) auto
   289           by (rule finite_subset) auto
   290         show "(# 2 * m + 1, # 2 * n + 1) : ?e ?t' 0" by simp
   290         show "(2 * m + 1, 2 * n + 1) : ?e ?t' 0" by simp
   291       qed
   291       qed
   292       thus ?thesis by simp
   292       thus ?thesis by simp
   293     qed
   293     qed
   294     also have "... < card (?e ?t 0)"
   294     also have "... < card (?e ?t 0)"
   295     proof -
   295     proof -