src/HOL/Transcendental.thy
changeset 68614 3cb44b0abc5c
parent 68611 4bc4b5c0ccfc
child 68634 db0980691ef4
equal deleted inserted replaced
68613:2fae3e01a2ec 68614:3cb44b0abc5c
  5695       using \<open>\<bar> x \<bar> < 1\<close> by auto
  5695       using \<open>\<bar> x \<bar> < 1\<close> by auto
  5696     show "summable (\<lambda> n. ?f n * real (Suc n) * x'^n)"
  5696     show "summable (\<lambda> n. ?f n * real (Suc n) * x'^n)"
  5697       if x'_bounds: "x' \<in> {- 1 <..< 1}" for x' :: real
  5697       if x'_bounds: "x' \<in> {- 1 <..< 1}" for x' :: real
  5698     proof -
  5698     proof -
  5699       from that have "\<bar>x'\<bar> < 1" by auto
  5699       from that have "\<bar>x'\<bar> < 1" by auto
  5700       then have *: "summable (\<lambda>n. (- 1) ^ n * x' ^ (2 * n))"
  5700       then show ?thesis
  5701         by (rule summable_Integral)
  5701         using that sums_summable sums_if [OF sums_0 [of "\<lambda>x. 0"] summable_sums [OF summable_Integral]]   
  5702       show ?thesis
  5702         by (auto simp add: if_distrib [of "\<lambda>x. x * y" for y] cong: if_cong)
  5703         unfolding if_eq
       
  5704         apply (rule sums_summable [where l="0 + (\<Sum>n. (-1)^n * x'^(2 * n))"])
       
  5705         apply (rule sums_if)
       
  5706          apply (rule sums_zero)
       
  5707         apply (rule summable_sums)
       
  5708         apply (rule *)
       
  5709         done
       
  5710     qed
  5703     qed
  5711   qed auto
  5704   qed auto
  5712   then show ?thesis
  5705   then show ?thesis
  5713     by (simp only: Int_eq arctan_eq)
  5706     by (simp only: Int_eq arctan_eq)
  5714 qed
  5707 qed