7 imports |
7 imports |
8 "HOL-Library.Boolean_Algebra" |
8 "HOL-Library.Boolean_Algebra" |
9 Main |
9 Main |
10 begin |
10 begin |
11 |
11 |
|
12 lemma minus_1_div_exp_eq_int [simp]: |
|
13 \<open>- 1 div (2 :: int) ^ n = - 1\<close> |
|
14 for n :: nat |
|
15 by (induction n) (use div_exp_eq [symmetric, of \<open>- 1 :: int\<close> 1] in \<open>simp_all add: ac_simps\<close>) |
|
16 |
|
17 context semiring_bits |
|
18 begin |
|
19 |
|
20 lemma bits_div_by_0 [simp]: |
|
21 \<open>a div 0 = 0\<close> |
|
22 by (metis local.add_cancel_right_right local.bit_mod_div_trivial local.mod_mult_div_eq local.mult_not_zero) |
|
23 |
|
24 lemma bit_0_eq [simp]: |
|
25 \<open>bit 0 = bot\<close> |
|
26 by (simp add: fun_eq_iff bit_def) |
|
27 |
|
28 end |
|
29 |
|
30 context semiring_bit_shifts |
|
31 begin |
|
32 |
|
33 end |
|
34 |
|
35 |
12 subsection \<open>Bit operations in suitable algebraic structures\<close> |
36 subsection \<open>Bit operations in suitable algebraic structures\<close> |
13 |
37 |
14 class semiring_bit_operations = semiring_bit_shifts + |
38 class semiring_bit_operations = semiring_bit_shifts + |
15 fixes "and" :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixr "AND" 64) |
39 fixes "and" :: \<open>'a \<Rightarrow> 'a \<Rightarrow> 'a\<close> (infixr "AND" 64) |
16 and or :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixr "OR" 59) |
40 and or :: \<open>'a \<Rightarrow> 'a \<Rightarrow> 'a\<close> (infixr "OR" 59) |
17 and xor :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixr "XOR" 59) |
41 and xor :: \<open>'a \<Rightarrow> 'a \<Rightarrow> 'a\<close> (infixr "XOR" 59) |
|
42 assumes bit_and_iff: \<open>\<And>n. bit (a AND b) n \<longleftrightarrow> bit a n \<and> bit b n\<close> |
|
43 and bit_or_iff: \<open>\<And>n. bit (a OR b) n \<longleftrightarrow> bit a n \<or> bit b n\<close> |
|
44 and bit_xor_iff: \<open>\<And>n. bit (a XOR b) n \<longleftrightarrow> bit a n \<noteq> bit b n\<close> |
18 begin |
45 begin |
19 |
46 |
20 text \<open> |
47 text \<open> |
21 We want the bitwise operations to bind slightly weaker |
48 We want the bitwise operations to bind slightly weaker |
22 than \<open>+\<close> and \<open>-\<close>. |
49 than \<open>+\<close> and \<open>-\<close>. |
38 definition flip_bit :: \<open>nat \<Rightarrow> 'a \<Rightarrow> 'a\<close> |
65 definition flip_bit :: \<open>nat \<Rightarrow> 'a \<Rightarrow> 'a\<close> |
39 where \<open>flip_bit n = map_bit n Not\<close> |
66 where \<open>flip_bit n = map_bit n Not\<close> |
40 |
67 |
41 text \<open> |
68 text \<open> |
42 Having |
69 Having |
43 <^const>\<open>set_bit\<close>, \<^const>\<open>unset_bit\<close> and \<^const>\<open>flip_bit\<close> as separate |
70 \<^const>\<open>set_bit\<close>, \<^const>\<open>unset_bit\<close> and \<^const>\<open>flip_bit\<close> as separate |
44 operations allows to implement them using bit masks later. |
71 operations allows to implement them using bit masks later. |
45 \<close> |
72 \<close> |
46 |
73 |
47 lemma stable_imp_drop_eq: |
74 lemma stable_imp_drop_eq: |
48 \<open>drop_bit n a = a\<close> if \<open>a div 2 = a\<close> |
75 \<open>drop_bit n a = a\<close> if \<open>a div 2 = a\<close> |
83 |
110 |
84 end |
111 end |
85 |
112 |
86 class ring_bit_operations = semiring_bit_operations + ring_parity + |
113 class ring_bit_operations = semiring_bit_operations + ring_parity + |
87 fixes not :: \<open>'a \<Rightarrow> 'a\<close> (\<open>NOT\<close>) |
114 fixes not :: \<open>'a \<Rightarrow> 'a\<close> (\<open>NOT\<close>) |
88 assumes boolean_algebra: \<open>boolean_algebra (AND) (OR) NOT 0 (- 1)\<close> |
115 assumes bits_even_minus_1_div_exp_iff [simp]: \<open>even (- 1 div 2 ^ n) \<longleftrightarrow> 2 ^ n = 0\<close> |
89 and boolean_algebra_xor_eq: \<open>boolean_algebra.xor (AND) (OR) NOT = (XOR)\<close> |
116 assumes bit_not_iff: \<open>\<And>n. bit (NOT a) n \<longleftrightarrow> 2 ^ n \<noteq> 0 \<and> \<not> bit a n\<close> |
90 begin |
117 begin |
|
118 |
|
119 lemma bits_minus_1_mod_2_eq [simp]: |
|
120 \<open>(- 1) mod 2 = 1\<close> |
|
121 by (simp add: mod_2_eq_odd) |
|
122 |
|
123 lemma bit_minus_1_iff [simp]: |
|
124 \<open>bit (- 1) n \<longleftrightarrow> 2 ^ n \<noteq> 0\<close> |
|
125 by (simp add: bit_def) |
91 |
126 |
92 sublocale bit: boolean_algebra \<open>(AND)\<close> \<open>(OR)\<close> NOT 0 \<open>- 1\<close> |
127 sublocale bit: boolean_algebra \<open>(AND)\<close> \<open>(OR)\<close> NOT 0 \<open>- 1\<close> |
93 rewrites \<open>bit.xor = (XOR)\<close> |
128 rewrites \<open>bit.xor = (XOR)\<close> |
94 proof - |
129 proof - |
95 interpret bit: boolean_algebra \<open>(AND)\<close> \<open>(OR)\<close> NOT 0 \<open>- 1\<close> |
130 interpret bit: boolean_algebra \<open>(AND)\<close> \<open>(OR)\<close> NOT 0 \<open>- 1\<close> |
96 by (fact boolean_algebra) |
131 apply standard |
|
132 apply (auto simp add: bit_eq_iff bit_and_iff bit_or_iff bit_not_iff) |
|
133 apply (metis local.bit_def local.bit_exp_iff local.bits_div_by_0) |
|
134 apply (metis local.bit_def local.bit_exp_iff local.bits_div_by_0) |
|
135 done |
97 show \<open>boolean_algebra (AND) (OR) NOT 0 (- 1)\<close> |
136 show \<open>boolean_algebra (AND) (OR) NOT 0 (- 1)\<close> |
98 by standard |
137 by standard |
99 show \<open>boolean_algebra.xor (AND) (OR) NOT = (XOR)\<close> |
138 show \<open>boolean_algebra.xor (AND) (OR) NOT = (XOR)\<close> |
100 by (fact boolean_algebra_xor_eq) |
139 apply (auto simp add: fun_eq_iff bit.xor_def bit_eq_iff bit_and_iff bit_or_iff bit_not_iff bit_xor_iff) |
|
140 apply (metis local.bit_def local.bit_exp_iff local.bits_div_by_0) |
|
141 apply (metis local.bit_def local.bit_exp_iff local.bits_div_by_0) |
|
142 apply (metis local.bit_def local.bit_exp_iff local.bits_div_by_0) |
|
143 apply (metis local.bit_def local.bit_exp_iff local.bits_div_by_0) |
|
144 apply (metis local.bit_def local.bit_exp_iff local.bits_div_by_0) |
|
145 apply (metis local.bit_def local.bit_exp_iff local.bits_div_by_0) |
|
146 done |
101 qed |
147 qed |
102 |
148 |
103 text \<open> |
149 text \<open> |
104 For the sake of code generation \<^const>\<open>not\<close> is specified as |
150 For the sake of code generation \<^const>\<open>not\<close> is specified as |
105 definitional class operation. Note that \<^const>\<open>not\<close> has no |
151 definitional class operation. Note that \<^const>\<open>not\<close> has no |
263 |
309 |
264 lemma xor_zero_nat_eq [simp]: |
310 lemma xor_zero_nat_eq [simp]: |
265 "n XOR 0 = n" for n :: nat |
311 "n XOR 0 = n" for n :: nat |
266 by simp |
312 by simp |
267 |
313 |
268 instance .. |
314 instance proof |
|
315 fix m n q :: nat |
|
316 show \<open>bit (m AND n) q \<longleftrightarrow> bit m q \<and> bit n q\<close> |
|
317 proof (rule sym, induction q arbitrary: m n) |
|
318 case 0 |
|
319 then show ?case |
|
320 by (simp add: and_nat.even_iff) |
|
321 next |
|
322 case (Suc q) |
|
323 with and_nat.rec [of m n] show ?case |
|
324 by simp |
|
325 qed |
|
326 show \<open>bit (m OR n) q \<longleftrightarrow> bit m q \<or> bit n q\<close> |
|
327 proof (rule sym, induction q arbitrary: m n) |
|
328 case 0 |
|
329 then show ?case |
|
330 by (simp add: or_nat.even_iff) |
|
331 next |
|
332 case (Suc q) |
|
333 with or_nat.rec [of m n] show ?case |
|
334 by simp |
|
335 qed |
|
336 show \<open>bit (m XOR n) q \<longleftrightarrow> bit m q \<noteq> bit n q\<close> |
|
337 proof (rule sym, induction q arbitrary: m n) |
|
338 case 0 |
|
339 then show ?case |
|
340 by (simp add: xor_nat.even_iff) |
|
341 next |
|
342 case (Suc q) |
|
343 with xor_nat.rec [of m n] show ?case |
|
344 by simp |
|
345 qed |
|
346 qed |
269 |
347 |
270 end |
348 end |
271 |
349 |
272 global_interpretation or_nat: semilattice_neutr "(OR)" "0 :: nat" |
350 global_interpretation or_nat: semilattice_neutr "(OR)" "0 :: nat" |
273 by standard simp |
351 by standard simp |
623 "NOT 1 = (- 2 :: int)" |
701 "NOT 1 = (- 2 :: int)" |
624 by simp |
702 by simp |
625 |
703 |
626 lemma even_not_iff [simp]: |
704 lemma even_not_iff [simp]: |
627 "even (NOT k) \<longleftrightarrow> odd k" |
705 "even (NOT k) \<longleftrightarrow> odd k" |
628 for k :: int |
706 for k :: int |
629 by (simp add: not_int_def) |
707 by (simp add: not_int_def) |
630 |
708 |
|
709 lemma bit_not_iff_int: |
|
710 \<open>bit (NOT k) n \<longleftrightarrow> \<not> bit k n\<close> |
|
711 for k :: int |
|
712 by (induction n arbitrary: k) |
|
713 (simp_all add: not_int_def flip: complement_div_2) |
|
714 |
|
715 |
631 instance proof |
716 instance proof |
632 interpret bit_int: boolean_algebra "(AND)" "(OR)" NOT 0 "- 1 :: int" |
717 fix k l :: int and n :: nat |
633 proof |
718 show \<open>bit (k AND l) n \<longleftrightarrow> bit k n \<and> bit l n\<close> |
634 show "k AND (l OR r) = k AND l OR k AND r" |
719 proof (rule sym, induction n arbitrary: k l) |
635 for k l r :: int |
720 case 0 |
636 proof (induction k arbitrary: l r rule: int_bit_induct) |
721 then show ?case |
637 case zero |
722 by (simp add: and_int.even_iff) |
638 show ?case |
723 next |
639 by simp |
724 case (Suc n) |
640 next |
725 with and_int.rec [of k l] show ?case |
641 case minus |
726 by simp |
642 show ?case |
727 qed |
643 by simp |
728 show \<open>bit (k OR l) n \<longleftrightarrow> bit k n \<or> bit l n\<close> |
644 next |
729 proof (rule sym, induction n arbitrary: k l) |
645 case (even k) |
730 case 0 |
646 then show ?case by (simp add: and_int.rec [of "k * 2"] |
731 then show ?case |
647 or_int.rec [of "(k AND l div 2) * 2"] or_int.rec [of l]) |
732 by (simp add: or_int.even_iff) |
648 next |
733 next |
649 case (odd k) |
734 case (Suc n) |
650 then show ?case by (simp add: and_int.rec [of "1 + k * 2"] |
735 with or_int.rec [of k l] show ?case |
651 or_int.rec [of "(k AND l div 2) * 2"] or_int.rec [of "1 + (k AND l div 2) * 2"] or_int.rec [of l]) |
736 by simp |
652 qed |
737 qed |
653 show "k OR l AND r = (k OR l) AND (k OR r)" |
738 show \<open>bit (k XOR l) n \<longleftrightarrow> bit k n \<noteq> bit l n\<close> |
654 for k l r :: int |
739 proof (rule sym, induction n arbitrary: k l) |
655 proof (induction k arbitrary: l r rule: int_bit_induct) |
740 case 0 |
656 case zero |
741 then show ?case |
657 then show ?case |
742 by (simp add: xor_int.even_iff) |
658 by simp |
743 next |
659 next |
744 case (Suc n) |
660 case minus |
745 with xor_int.rec [of k l] show ?case |
661 then show ?case |
746 by simp |
662 by simp |
747 qed |
663 next |
748 qed (simp_all add: bit_not_iff_int) |
664 case (even k) |
|
665 then show ?case by (simp add: or_int.rec [of "k * 2"] |
|
666 and_int.rec [of "(k OR l div 2) * 2"] and_int.rec [of "1 + (k OR l div 2) * 2"] and_int.rec [of l]) |
|
667 next |
|
668 case (odd k) |
|
669 then show ?case by (simp add: or_int.rec [of "1 + k * 2"] |
|
670 and_int.rec [of "1 + (k OR l div 2) * 2"] and_int.rec [of l]) |
|
671 qed |
|
672 show "k AND NOT k = 0" for k :: int |
|
673 by (induction k rule: int_bit_induct) |
|
674 (simp_all add: not_int_def complement_half minus_diff_commute [of 1]) |
|
675 show "k OR NOT k = - 1" for k :: int |
|
676 by (induction k rule: int_bit_induct) |
|
677 (simp_all add: not_int_def complement_half minus_diff_commute [of 1]) |
|
678 qed (simp_all add: and_int.assoc or_int.assoc, |
|
679 simp_all add: and_int.commute or_int.commute) |
|
680 show "boolean_algebra (AND) (OR) NOT 0 (- 1 :: int)" |
|
681 by (fact bit_int.boolean_algebra_axioms) |
|
682 show "bit_int.xor = ((XOR) :: int \<Rightarrow> _)" |
|
683 proof (rule ext)+ |
|
684 fix k l :: int |
|
685 have "k XOR l = k AND NOT l OR NOT k AND l" |
|
686 proof (induction k arbitrary: l rule: int_bit_induct) |
|
687 case zero |
|
688 show ?case |
|
689 by simp |
|
690 next |
|
691 case minus |
|
692 show ?case |
|
693 by (simp add: not_int_def) |
|
694 next |
|
695 case (even k) |
|
696 then show ?case |
|
697 by (simp add: xor_int.rec [of "k * 2"] and_int.rec [of "k * 2"] |
|
698 or_int.rec [of _ "1 + 2 * NOT k AND l"] not_div_2) |
|
699 (simp add: and_int.rec [of _ l]) |
|
700 next |
|
701 case (odd k) |
|
702 then show ?case |
|
703 by (simp add: xor_int.rec [of "1 + k * 2"] and_int.rec [of "1 + k * 2"] |
|
704 or_int.rec [of _ "2 * NOT k AND l"] not_div_2) |
|
705 (simp add: and_int.rec [of _ l]) |
|
706 qed |
|
707 then show "bit_int.xor k l = k XOR l" |
|
708 by (simp add: bit_int.xor_def) |
|
709 qed |
|
710 qed |
|
711 |
749 |
712 end |
750 end |
713 |
751 |
714 lemma one_and_int_eq [simp]: |
752 lemma one_and_int_eq [simp]: |
715 "1 AND k = k mod 2" for k :: int |
753 "1 AND k = k mod 2" for k :: int |
741 by (simp add: Parity.take_bit_eq_mod mod_eq_dvd_iff dvd_diff_commute) |
779 by (simp add: Parity.take_bit_eq_mod mod_eq_dvd_iff dvd_diff_commute) |
742 |
780 |
743 lemma take_bit_not_iff: |
781 lemma take_bit_not_iff: |
744 "Parity.take_bit n (NOT k) = Parity.take_bit n (NOT l) \<longleftrightarrow> Parity.take_bit n k = Parity.take_bit n l" |
782 "Parity.take_bit n (NOT k) = Parity.take_bit n (NOT l) \<longleftrightarrow> Parity.take_bit n k = Parity.take_bit n l" |
745 for k l :: int |
783 for k l :: int |
746 by (simp add: not_int_def take_bit_complement_iff) |
784 by (auto simp add: bit_eq_iff bit_take_bit_iff bit_not_iff_int) |
747 |
785 |
748 lemma take_bit_and [simp]: |
786 lemma take_bit_and [simp]: |
749 "Parity.take_bit n (k AND l) = Parity.take_bit n k AND Parity.take_bit n l" |
787 "Parity.take_bit n (k AND l) = Parity.take_bit n k AND Parity.take_bit n l" |
750 for k l :: int |
788 for k l :: int |
751 apply (induction n arbitrary: k l) |
789 by (auto simp add: bit_eq_iff bit_take_bit_iff bit_and_iff) |
752 apply simp |
|
753 apply (subst and_int.rec) |
|
754 apply (subst (2) and_int.rec) |
|
755 apply simp |
|
756 done |
|
757 |
790 |
758 lemma take_bit_or [simp]: |
791 lemma take_bit_or [simp]: |
759 "Parity.take_bit n (k OR l) = Parity.take_bit n k OR Parity.take_bit n l" |
792 "Parity.take_bit n (k OR l) = Parity.take_bit n k OR Parity.take_bit n l" |
760 for k l :: int |
793 for k l :: int |
761 apply (induction n arbitrary: k l) |
794 by (auto simp add: bit_eq_iff bit_take_bit_iff bit_or_iff) |
762 apply simp |
|
763 apply (subst or_int.rec) |
|
764 apply (subst (2) or_int.rec) |
|
765 apply simp |
|
766 done |
|
767 |
795 |
768 lemma take_bit_xor [simp]: |
796 lemma take_bit_xor [simp]: |
769 "Parity.take_bit n (k XOR l) = Parity.take_bit n k XOR Parity.take_bit n l" |
797 "Parity.take_bit n (k XOR l) = Parity.take_bit n k XOR Parity.take_bit n l" |
770 for k l :: int |
798 for k l :: int |
771 apply (induction n arbitrary: k l) |
799 by (auto simp add: bit_eq_iff bit_take_bit_iff bit_xor_iff) |
772 apply simp |
|
773 apply (subst xor_int.rec) |
|
774 apply (subst (2) xor_int.rec) |
|
775 apply simp |
|
776 done |
|
777 |
800 |
778 end |
801 end |