src/HOL/Import/HOL4/Generated/HOL4Word32.thy
changeset 46787 3d3d8f8929a7
parent 46780 ab4f3f765f91
equal deleted inserted replaced
46786:f0285e69d704 46787:3d3d8f8929a7
       
     1 (* AUTOMATICALLY GENERATED, DO NOT EDIT! *)
       
     2 
       
     3 theory HOL4Word32 imports HOL4Base begin
       
     4 
       
     5 setup_theory "~~/src/HOL/Import/HOL4/Generated" bits
       
     6 
       
     7 consts
       
     8   DIV2 :: "nat => nat" 
       
     9 
       
    10 defs
       
    11   DIV2_primdef: "DIV2 == %n. n div 2"
       
    12 
       
    13 lemma DIV2_def: "DIV2 n = n div 2"
       
    14   by (import bits DIV2_def)
       
    15 
       
    16 consts
       
    17   TIMES_2EXP :: "nat => nat => nat" 
       
    18 
       
    19 defs
       
    20   TIMES_2EXP_primdef: "TIMES_2EXP == %x n. n * 2 ^ x"
       
    21 
       
    22 lemma TIMES_2EXP_def: "TIMES_2EXP x n = n * 2 ^ x"
       
    23   by (import bits TIMES_2EXP_def)
       
    24 
       
    25 consts
       
    26   DIV_2EXP :: "nat => nat => nat" 
       
    27 
       
    28 defs
       
    29   DIV_2EXP_primdef: "DIV_2EXP == %x n. n div 2 ^ x"
       
    30 
       
    31 lemma DIV_2EXP_def: "DIV_2EXP x n = n div 2 ^ x"
       
    32   by (import bits DIV_2EXP_def)
       
    33 
       
    34 consts
       
    35   MOD_2EXP :: "nat => nat => nat" 
       
    36 
       
    37 defs
       
    38   MOD_2EXP_primdef: "MOD_2EXP == %x n. n mod 2 ^ x"
       
    39 
       
    40 lemma MOD_2EXP_def: "MOD_2EXP x n = n mod 2 ^ x"
       
    41   by (import bits MOD_2EXP_def)
       
    42 
       
    43 consts
       
    44   DIVMOD_2EXP :: "nat => nat => nat * nat" 
       
    45 
       
    46 defs
       
    47   DIVMOD_2EXP_primdef: "DIVMOD_2EXP == %x n. (n div 2 ^ x, n mod 2 ^ x)"
       
    48 
       
    49 lemma DIVMOD_2EXP_def: "DIVMOD_2EXP x n = (n div 2 ^ x, n mod 2 ^ x)"
       
    50   by (import bits DIVMOD_2EXP_def)
       
    51 
       
    52 consts
       
    53   SBIT :: "bool => nat => nat" 
       
    54 
       
    55 defs
       
    56   SBIT_primdef: "SBIT == %b n. if b then 2 ^ n else 0"
       
    57 
       
    58 lemma SBIT_def: "SBIT b n = (if b then 2 ^ n else 0)"
       
    59   by (import bits SBIT_def)
       
    60 
       
    61 consts
       
    62   BITS :: "nat => nat => nat => nat" 
       
    63 
       
    64 defs
       
    65   BITS_primdef: "BITS == %h l n. MOD_2EXP (Suc h - l) (DIV_2EXP l n)"
       
    66 
       
    67 lemma BITS_def: "BITS h l n = MOD_2EXP (Suc h - l) (DIV_2EXP l n)"
       
    68   by (import bits BITS_def)
       
    69 
       
    70 definition
       
    71   bit :: "nat => nat => bool"  where
       
    72   "bit == %b n. BITS b b n = 1"
       
    73 
       
    74 lemma BIT_def: "bit b n = (BITS b b n = 1)"
       
    75   by (import bits BIT_def)
       
    76 
       
    77 consts
       
    78   SLICE :: "nat => nat => nat => nat" 
       
    79 
       
    80 defs
       
    81   SLICE_primdef: "SLICE == %h l n. MOD_2EXP (Suc h) n - MOD_2EXP l n"
       
    82 
       
    83 lemma SLICE_def: "SLICE h l n = MOD_2EXP (Suc h) n - MOD_2EXP l n"
       
    84   by (import bits SLICE_def)
       
    85 
       
    86 consts
       
    87   LSBn :: "nat => bool" 
       
    88 
       
    89 defs
       
    90   LSBn_primdef: "LSBn == bit 0"
       
    91 
       
    92 lemma LSBn_def: "LSBn = bit 0"
       
    93   by (import bits LSBn_def)
       
    94 
       
    95 consts
       
    96   BITWISE :: "nat => (bool => bool => bool) => nat => nat => nat" 
       
    97 
       
    98 specification (BITWISE_primdef: BITWISE) BITWISE_def: "(ALL oper x y. BITWISE 0 oper x y = 0) &
       
    99 (ALL n oper x y.
       
   100     BITWISE (Suc n) oper x y =
       
   101     BITWISE n oper x y + SBIT (oper (bit n x) (bit n y)) n)"
       
   102   by (import bits BITWISE_def)
       
   103 
       
   104 lemma SUC_SUB: "Suc a - a = 1"
       
   105   by (import bits SUC_SUB)
       
   106 
       
   107 lemma DIV_MULT_1: "(r::nat) < (n::nat) ==> (n + r) div n = (1::nat)"
       
   108   by (import bits DIV_MULT_1)
       
   109 
       
   110 lemma ZERO_LT_TWOEXP: "(0::nat) < (2::nat) ^ (n::nat)"
       
   111   by (import bits ZERO_LT_TWOEXP)
       
   112 
       
   113 lemma MOD_2EXP_LT: "(k::nat) mod (2::nat) ^ (n::nat) < (2::nat) ^ n"
       
   114   by (import bits MOD_2EXP_LT)
       
   115 
       
   116 lemma TWOEXP_DIVISION: "(k::nat) = k div (2::nat) ^ (n::nat) * (2::nat) ^ n + k mod (2::nat) ^ n"
       
   117   by (import bits TWOEXP_DIVISION)
       
   118 
       
   119 lemma TWOEXP_MONO: "(a::nat) < (b::nat) ==> (2::nat) ^ a < (2::nat) ^ b"
       
   120   by (import bits TWOEXP_MONO)
       
   121 
       
   122 lemma TWOEXP_MONO2: "(a::nat) <= (b::nat) ==> (2::nat) ^ a <= (2::nat) ^ b"
       
   123   by (import bits TWOEXP_MONO2)
       
   124 
       
   125 lemma EXP_SUB_LESS_EQ: "(2::nat) ^ ((a::nat) - (b::nat)) <= (2::nat) ^ a"
       
   126   by (import bits EXP_SUB_LESS_EQ)
       
   127 
       
   128 lemma BITS_THM: "BITS x xa xb = xb div 2 ^ xa mod 2 ^ (Suc x - xa)"
       
   129   by (import bits BITS_THM)
       
   130 
       
   131 lemma BITSLT_THM: "BITS h l n < 2 ^ (Suc h - l)"
       
   132   by (import bits BITSLT_THM)
       
   133 
       
   134 lemma DIV_MULT_LEM: "(0::nat) < (n::nat) ==> (m::nat) div n * n <= m"
       
   135   by (import bits DIV_MULT_LEM)
       
   136 
       
   137 lemma MOD_2EXP_LEM: "(n::nat) mod (2::nat) ^ (x::nat) = n - n div (2::nat) ^ x * (2::nat) ^ x"
       
   138   by (import bits MOD_2EXP_LEM)
       
   139 
       
   140 lemma BITS2_THM: "BITS h l n = n mod 2 ^ Suc h div 2 ^ l"
       
   141   by (import bits BITS2_THM)
       
   142 
       
   143 lemma BITS_COMP_THM: "h2 + l1 <= h1 ==> BITS h2 l2 (BITS h1 l1 n) = BITS (h2 + l1) (l2 + l1) n"
       
   144   by (import bits BITS_COMP_THM)
       
   145 
       
   146 lemma BITS_DIV_THM: "BITS h l x div 2 ^ n = BITS h (l + n) x"
       
   147   by (import bits BITS_DIV_THM)
       
   148 
       
   149 lemma BITS_LT_HIGH: "n < 2 ^ Suc h ==> BITS h l n = n div 2 ^ l"
       
   150   by (import bits BITS_LT_HIGH)
       
   151 
       
   152 lemma BITS_ZERO: "h < l ==> BITS h l n = 0"
       
   153   by (import bits BITS_ZERO)
       
   154 
       
   155 lemma BITS_ZERO2: "BITS h l 0 = 0"
       
   156   by (import bits BITS_ZERO2)
       
   157 
       
   158 lemma BITS_ZERO3: "BITS h 0 x = x mod 2 ^ Suc h"
       
   159   by (import bits BITS_ZERO3)
       
   160 
       
   161 lemma BITS_COMP_THM2: "BITS h2 l2 (BITS h1 l1 n) = BITS (min h1 (h2 + l1)) (l2 + l1) n"
       
   162   by (import bits BITS_COMP_THM2)
       
   163 
       
   164 lemma NOT_MOD2_LEM: "((n::nat) mod (2::nat) ~= (0::nat)) = (n mod (2::nat) = (1::nat))"
       
   165   by (import bits NOT_MOD2_LEM)
       
   166 
       
   167 lemma NOT_MOD2_LEM2: "((n::nat) mod (2::nat) ~= (1::nat)) = (n mod (2::nat) = (0::nat))"
       
   168   by (import bits NOT_MOD2_LEM2)
       
   169 
       
   170 lemma EVEN_MOD2_LEM: "EVEN n = (n mod 2 = 0)"
       
   171   by (import bits EVEN_MOD2_LEM)
       
   172 
       
   173 lemma ODD_MOD2_LEM: "ODD n = (n mod 2 = 1)"
       
   174   by (import bits ODD_MOD2_LEM)
       
   175 
       
   176 lemma LSB_ODD: "LSBn = ODD"
       
   177   by (import bits LSB_ODD)
       
   178 
       
   179 lemma DIV_MULT_THM: "(n::nat) div (2::nat) ^ (x::nat) * (2::nat) ^ x = n - n mod (2::nat) ^ x"
       
   180   by (import bits DIV_MULT_THM)
       
   181 
       
   182 lemma DIV_MULT_THM2: "(2::nat) * ((x::nat) div (2::nat)) = x - x mod (2::nat)"
       
   183   by (import bits DIV_MULT_THM2)
       
   184 
       
   185 lemma LESS_EQ_EXP_MULT: "(a::nat) <= (b::nat) ==> EX x::nat. (2::nat) ^ b = x * (2::nat) ^ a"
       
   186   by (import bits LESS_EQ_EXP_MULT)
       
   187 
       
   188 lemma SLICE_LEM1: "(a::nat) div (2::nat) ^ ((x::nat) + (y::nat)) * (2::nat) ^ (x + y) =
       
   189 a div (2::nat) ^ x * (2::nat) ^ x -
       
   190 a div (2::nat) ^ x mod (2::nat) ^ y * (2::nat) ^ x"
       
   191   by (import bits SLICE_LEM1)
       
   192 
       
   193 lemma SLICE_LEM2: "(n::nat) mod (2::nat) ^ ((x::nat) + (y::nat)) =
       
   194 n mod (2::nat) ^ x + n div (2::nat) ^ x mod (2::nat) ^ y * (2::nat) ^ x"
       
   195   by (import bits SLICE_LEM2)
       
   196 
       
   197 lemma SLICE_LEM3: "(l::nat) < (h::nat) ==> (n::nat) mod (2::nat) ^ Suc l <= n mod (2::nat) ^ h"
       
   198   by (import bits SLICE_LEM3)
       
   199 
       
   200 lemma SLICE_THM: "SLICE h l n = BITS h l n * 2 ^ l"
       
   201   by (import bits SLICE_THM)
       
   202 
       
   203 lemma SLICELT_THM: "SLICE h l n < 2 ^ Suc h"
       
   204   by (import bits SLICELT_THM)
       
   205 
       
   206 lemma BITS_SLICE_THM: "BITS h l (SLICE h l n) = BITS h l n"
       
   207   by (import bits BITS_SLICE_THM)
       
   208 
       
   209 lemma BITS_SLICE_THM2: "h <= h2 ==> BITS h2 l (SLICE h l n) = BITS h l n"
       
   210   by (import bits BITS_SLICE_THM2)
       
   211 
       
   212 lemma MOD_2EXP_MONO: "(l::nat) <= (h::nat) ==> (n::nat) mod (2::nat) ^ l <= n mod (2::nat) ^ Suc h"
       
   213   by (import bits MOD_2EXP_MONO)
       
   214 
       
   215 lemma SLICE_COMP_THM: "Suc m <= h & l <= m ==> SLICE h (Suc m) n + SLICE m l n = SLICE h l n"
       
   216   by (import bits SLICE_COMP_THM)
       
   217 
       
   218 lemma SLICE_ZERO: "h < l ==> SLICE h l n = 0"
       
   219   by (import bits SLICE_ZERO)
       
   220 
       
   221 lemma BIT_COMP_THM3: "Suc m <= h & l <= m
       
   222 ==> BITS h (Suc m) n * 2 ^ (Suc m - l) + BITS m l n = BITS h l n"
       
   223   by (import bits BIT_COMP_THM3)
       
   224 
       
   225 lemma NOT_BIT: "(~ bit n a) = (BITS n n a = 0)"
       
   226   by (import bits NOT_BIT)
       
   227 
       
   228 lemma NOT_BITS: "(BITS n n a ~= 0) = (BITS n n a = 1)"
       
   229   by (import bits NOT_BITS)
       
   230 
       
   231 lemma NOT_BITS2: "(BITS n n a ~= 1) = (BITS n n a = 0)"
       
   232   by (import bits NOT_BITS2)
       
   233 
       
   234 lemma BIT_SLICE: "(bit n a = bit n b) = (SLICE n n a = SLICE n n b)"
       
   235   by (import bits BIT_SLICE)
       
   236 
       
   237 lemma BIT_SLICE_LEM: "SBIT (bit x n) (x + y) = SLICE x x n * 2 ^ y"
       
   238   by (import bits BIT_SLICE_LEM)
       
   239 
       
   240 lemma BIT_SLICE_THM: "SBIT (bit x xa) x = SLICE x x xa"
       
   241   by (import bits BIT_SLICE_THM)
       
   242 
       
   243 lemma SBIT_DIV: "n < m ==> SBIT b (m - n) = SBIT b m div 2 ^ n"
       
   244   by (import bits SBIT_DIV)
       
   245 
       
   246 lemma BITS_SUC: "l <= Suc h
       
   247 ==> SBIT (bit (Suc h) n) (Suc h - l) + BITS h l n = BITS (Suc h) l n"
       
   248   by (import bits BITS_SUC)
       
   249 
       
   250 lemma BITS_SUC_THM: "BITS (Suc h) l n =
       
   251 (if Suc h < l then 0 else SBIT (bit (Suc h) n) (Suc h - l) + BITS h l n)"
       
   252   by (import bits BITS_SUC_THM)
       
   253 
       
   254 lemma BIT_BITS_THM: "(ALL x. l <= x & x <= h --> bit x a = bit x b) = (BITS h l a = BITS h l b)"
       
   255   by (import bits BIT_BITS_THM)
       
   256 
       
   257 lemma BITWISE_LT_2EXP: "BITWISE n oper a b < 2 ^ n"
       
   258   by (import bits BITWISE_LT_2EXP)
       
   259 
       
   260 lemma LESS_EXP_MULT2: "(a::nat) < (b::nat)
       
   261 ==> EX x::nat. (2::nat) ^ b = (2::nat) ^ (x + (1::nat)) * (2::nat) ^ a"
       
   262   by (import bits LESS_EXP_MULT2)
       
   263 
       
   264 lemma BITWISE_THM: "x < n ==> bit x (BITWISE n oper a b) = oper (bit x a) (bit x b)"
       
   265   by (import bits BITWISE_THM)
       
   266 
       
   267 lemma BITWISE_COR: "[| x < n; oper (bit x a) (bit x b) |]
       
   268 ==> BITWISE n oper a b div 2 ^ x mod 2 = 1"
       
   269   by (import bits BITWISE_COR)
       
   270 
       
   271 lemma BITWISE_NOT_COR: "[| x < n; ~ oper (bit x a) (bit x b) |]
       
   272 ==> BITWISE n oper a b div 2 ^ x mod 2 = 0"
       
   273   by (import bits BITWISE_NOT_COR)
       
   274 
       
   275 lemma MOD_PLUS_RIGHT: "(0::nat) < (n::nat) ==> ((j::nat) + (k::nat) mod n) mod n = (j + k) mod n"
       
   276   by (import bits MOD_PLUS_RIGHT)
       
   277 
       
   278 lemma MOD_PLUS_1: "(0::nat) < (n::nat)
       
   279 ==> (((x::nat) + (1::nat)) mod n = (0::nat)) = (x mod n + (1::nat) = n)"
       
   280   by (import bits MOD_PLUS_1)
       
   281 
       
   282 lemma MOD_ADD_1: "[| (0::nat) < (n::nat); ((x::nat) + (1::nat)) mod n ~= (0::nat) |]
       
   283 ==> (x + (1::nat)) mod n = x mod n + (1::nat)"
       
   284   by (import bits MOD_ADD_1)
       
   285 
       
   286 ;end_setup
       
   287 
       
   288 setup_theory "~~/src/HOL/Import/HOL4/Generated" word32
       
   289 
       
   290 consts
       
   291   HB :: "nat" 
       
   292 
       
   293 defs
       
   294   HB_primdef: "HB ==
       
   295 NUMERAL
       
   296  (NUMERAL_BIT1
       
   297    (NUMERAL_BIT1 (NUMERAL_BIT1 (NUMERAL_BIT1 (NUMERAL_BIT1 ALT_ZERO)))))"
       
   298 
       
   299 lemma HB_def: "HB =
       
   300 NUMERAL
       
   301  (NUMERAL_BIT1
       
   302    (NUMERAL_BIT1 (NUMERAL_BIT1 (NUMERAL_BIT1 (NUMERAL_BIT1 ALT_ZERO)))))"
       
   303   by (import word32 HB_def)
       
   304 
       
   305 consts
       
   306   WL :: "nat" 
       
   307 
       
   308 defs
       
   309   WL_primdef: "WL == Suc HB"
       
   310 
       
   311 lemma WL_def: "WL = Suc HB"
       
   312   by (import word32 WL_def)
       
   313 
       
   314 consts
       
   315   MODw :: "nat => nat" 
       
   316 
       
   317 defs
       
   318   MODw_primdef: "MODw == %n. n mod 2 ^ WL"
       
   319 
       
   320 lemma MODw_def: "MODw n = n mod 2 ^ WL"
       
   321   by (import word32 MODw_def)
       
   322 
       
   323 consts
       
   324   INw :: "nat => bool" 
       
   325 
       
   326 defs
       
   327   INw_primdef: "INw == %n. n < 2 ^ WL"
       
   328 
       
   329 lemma INw_def: "INw n = (n < 2 ^ WL)"
       
   330   by (import word32 INw_def)
       
   331 
       
   332 consts
       
   333   EQUIV :: "nat => nat => bool" 
       
   334 
       
   335 defs
       
   336   EQUIV_primdef: "EQUIV == %x y. MODw x = MODw y"
       
   337 
       
   338 lemma EQUIV_def: "EQUIV x y = (MODw x = MODw y)"
       
   339   by (import word32 EQUIV_def)
       
   340 
       
   341 lemma EQUIV_QT: "EQUIV x y = (EQUIV x = EQUIV y)"
       
   342   by (import word32 EQUIV_QT)
       
   343 
       
   344 lemma FUNPOW_THM2: "(f ^^ Suc n) x = f ((f ^^ n) x)"
       
   345   by (import word32 FUNPOW_THM2)
       
   346 
       
   347 lemma FUNPOW_COMP: "(f ^^ m) ((f ^^ n) a) = (f ^^ (m + n)) a"
       
   348   by (import word32 FUNPOW_COMP)
       
   349 
       
   350 lemma INw_MODw: "INw (MODw n)"
       
   351   by (import word32 INw_MODw)
       
   352 
       
   353 lemma TOw_IDEM: "INw a ==> MODw a = a"
       
   354   by (import word32 TOw_IDEM)
       
   355 
       
   356 lemma MODw_IDEM2: "MODw (MODw a) = MODw a"
       
   357   by (import word32 MODw_IDEM2)
       
   358 
       
   359 lemma TOw_QT: "EQUIV (MODw a) a"
       
   360   by (import word32 TOw_QT)
       
   361 
       
   362 lemma MODw_THM: "MODw = BITS HB 0"
       
   363   by (import word32 MODw_THM)
       
   364 
       
   365 lemma MOD_ADD: "MODw (a + b) = MODw (MODw a + MODw b)"
       
   366   by (import word32 MOD_ADD)
       
   367 
       
   368 lemma MODw_MULT: "MODw (a * b) = MODw (MODw a * MODw b)"
       
   369   by (import word32 MODw_MULT)
       
   370 
       
   371 consts
       
   372   AONE :: "nat" 
       
   373 
       
   374 defs
       
   375   AONE_primdef: "AONE == 1"
       
   376 
       
   377 lemma AONE_def: "AONE = 1"
       
   378   by (import word32 AONE_def)
       
   379 
       
   380 lemma ADD_QT: "(ALL n. EQUIV (0 + n) n) & (ALL m n. EQUIV (Suc m + n) (Suc (m + n)))"
       
   381   by (import word32 ADD_QT)
       
   382 
       
   383 lemma ADD_0_QT: "EQUIV (a + 0) a"
       
   384   by (import word32 ADD_0_QT)
       
   385 
       
   386 lemma ADD_COMM_QT: "EQUIV (a + b) (b + a)"
       
   387   by (import word32 ADD_COMM_QT)
       
   388 
       
   389 lemma ADD_ASSOC_QT: "EQUIV (a + (b + c)) (a + b + c)"
       
   390   by (import word32 ADD_ASSOC_QT)
       
   391 
       
   392 lemma MULT_QT: "(ALL n. EQUIV (0 * n) 0) & (ALL m n. EQUIV (Suc m * n) (m * n + n))"
       
   393   by (import word32 MULT_QT)
       
   394 
       
   395 lemma ADD1_QT: "EQUIV (Suc m) (m + AONE)"
       
   396   by (import word32 ADD1_QT)
       
   397 
       
   398 lemma ADD_CLAUSES_QT: "(ALL m. EQUIV (0 + m) m) &
       
   399 (ALL m. EQUIV (m + 0) m) &
       
   400 (ALL m n. EQUIV (Suc m + n) (Suc (m + n))) &
       
   401 (ALL m n. EQUIV (m + Suc n) (Suc (m + n)))"
       
   402   by (import word32 ADD_CLAUSES_QT)
       
   403 
       
   404 lemma SUC_EQUIV_COMP: "EQUIV (Suc a) b ==> EQUIV a (b + (2 ^ WL - 1))"
       
   405   by (import word32 SUC_EQUIV_COMP)
       
   406 
       
   407 lemma INV_SUC_EQ_QT: "EQUIV (Suc m) (Suc n) = EQUIV m n"
       
   408   by (import word32 INV_SUC_EQ_QT)
       
   409 
       
   410 lemma ADD_INV_0_QT: "EQUIV (m + n) m ==> EQUIV n 0"
       
   411   by (import word32 ADD_INV_0_QT)
       
   412 
       
   413 lemma ADD_INV_0_EQ_QT: "EQUIV (m + n) m = EQUIV n 0"
       
   414   by (import word32 ADD_INV_0_EQ_QT)
       
   415 
       
   416 lemma EQ_ADD_LCANCEL_QT: "EQUIV (m + n) (m + p) = EQUIV n p"
       
   417   by (import word32 EQ_ADD_LCANCEL_QT)
       
   418 
       
   419 lemma EQ_ADD_RCANCEL_QT: "EQUIV (x + xb) (xa + xb) = EQUIV x xa"
       
   420   by (import word32 EQ_ADD_RCANCEL_QT)
       
   421 
       
   422 lemma LEFT_ADD_DISTRIB_QT: "EQUIV (p * (m + n)) (p * m + p * n)"
       
   423   by (import word32 LEFT_ADD_DISTRIB_QT)
       
   424 
       
   425 lemma MULT_ASSOC_QT: "EQUIV (m * (n * p)) (m * n * p)"
       
   426   by (import word32 MULT_ASSOC_QT)
       
   427 
       
   428 lemma MULT_COMM_QT: "EQUIV (m * n) (n * m)"
       
   429   by (import word32 MULT_COMM_QT)
       
   430 
       
   431 lemma MULT_CLAUSES_QT: "EQUIV (0 * m) 0 &
       
   432 EQUIV (m * 0) 0 &
       
   433 EQUIV (AONE * m) m &
       
   434 EQUIV (m * AONE) m &
       
   435 EQUIV (Suc m * n) (m * n + n) & EQUIV (m * Suc n) (m + m * n)"
       
   436   by (import word32 MULT_CLAUSES_QT)
       
   437 
       
   438 consts
       
   439   MSBn :: "nat => bool" 
       
   440 
       
   441 defs
       
   442   MSBn_primdef: "MSBn == bit HB"
       
   443 
       
   444 lemma MSBn_def: "MSBn = bit HB"
       
   445   by (import word32 MSBn_def)
       
   446 
       
   447 consts
       
   448   ONE_COMP :: "nat => nat" 
       
   449 
       
   450 defs
       
   451   ONE_COMP_primdef: "ONE_COMP == %x. 2 ^ WL - 1 - MODw x"
       
   452 
       
   453 lemma ONE_COMP_def: "ONE_COMP x = 2 ^ WL - 1 - MODw x"
       
   454   by (import word32 ONE_COMP_def)
       
   455 
       
   456 consts
       
   457   TWO_COMP :: "nat => nat" 
       
   458 
       
   459 defs
       
   460   TWO_COMP_primdef: "TWO_COMP == %x. 2 ^ WL - MODw x"
       
   461 
       
   462 lemma TWO_COMP_def: "TWO_COMP x = 2 ^ WL - MODw x"
       
   463   by (import word32 TWO_COMP_def)
       
   464 
       
   465 lemma ADD_TWO_COMP_QT: "EQUIV (MODw a + TWO_COMP a) 0"
       
   466   by (import word32 ADD_TWO_COMP_QT)
       
   467 
       
   468 lemma TWO_COMP_ONE_COMP_QT: "EQUIV (TWO_COMP a) (ONE_COMP a + AONE)"
       
   469   by (import word32 TWO_COMP_ONE_COMP_QT)
       
   470 
       
   471 lemma BIT_EQUIV_THM: "(ALL xb<WL. bit xb x = bit xb xa) = EQUIV x xa"
       
   472   by (import word32 BIT_EQUIV_THM)
       
   473 
       
   474 lemma BITS_SUC2: "BITS (Suc n) 0 a = SLICE (Suc n) (Suc n) a + BITS n 0 a"
       
   475   by (import word32 BITS_SUC2)
       
   476 
       
   477 lemma BITWISE_ONE_COMP_THM: "BITWISE WL (%x y. ~ x) a b = ONE_COMP a"
       
   478   by (import word32 BITWISE_ONE_COMP_THM)
       
   479 
       
   480 lemma ONE_COMP_THM: "xa < WL ==> bit xa (ONE_COMP x) = (~ bit xa x)"
       
   481   by (import word32 ONE_COMP_THM)
       
   482 
       
   483 consts
       
   484   OR :: "nat => nat => nat" 
       
   485 
       
   486 defs
       
   487   OR_primdef: "OR == BITWISE WL op |"
       
   488 
       
   489 lemma OR_def: "OR = BITWISE WL op |"
       
   490   by (import word32 OR_def)
       
   491 
       
   492 consts
       
   493   AND :: "nat => nat => nat" 
       
   494 
       
   495 defs
       
   496   AND_primdef: "AND == BITWISE WL op &"
       
   497 
       
   498 lemma AND_def: "AND = BITWISE WL op &"
       
   499   by (import word32 AND_def)
       
   500 
       
   501 consts
       
   502   EOR :: "nat => nat => nat" 
       
   503 
       
   504 defs
       
   505   EOR_primdef: "EOR == BITWISE WL op ~="
       
   506 
       
   507 lemma EOR_def: "EOR = BITWISE WL op ~="
       
   508   by (import word32 EOR_def)
       
   509 
       
   510 consts
       
   511   COMP0 :: "nat" 
       
   512 
       
   513 defs
       
   514   COMP0_primdef: "COMP0 == ONE_COMP 0"
       
   515 
       
   516 lemma COMP0_def: "COMP0 = ONE_COMP 0"
       
   517   by (import word32 COMP0_def)
       
   518 
       
   519 lemma BITWISE_THM2: "(ALL x<WL. oper (bit x a) (bit x b) = bit x y) =
       
   520 EQUIV (BITWISE WL oper a b) y"
       
   521   by (import word32 BITWISE_THM2)
       
   522 
       
   523 lemma OR_ASSOC_QT: "EQUIV (OR a (OR b c)) (OR (OR a b) c)"
       
   524   by (import word32 OR_ASSOC_QT)
       
   525 
       
   526 lemma OR_COMM_QT: "EQUIV (OR a b) (OR b a)"
       
   527   by (import word32 OR_COMM_QT)
       
   528 
       
   529 lemma OR_ABSORB_QT: "EQUIV (AND a (OR a b)) a"
       
   530   by (import word32 OR_ABSORB_QT)
       
   531 
       
   532 lemma OR_IDEM_QT: "EQUIV (OR a a) a"
       
   533   by (import word32 OR_IDEM_QT)
       
   534 
       
   535 lemma AND_ASSOC_QT: "EQUIV (AND a (AND b c)) (AND (AND a b) c)"
       
   536   by (import word32 AND_ASSOC_QT)
       
   537 
       
   538 lemma AND_COMM_QT: "EQUIV (AND a b) (AND b a)"
       
   539   by (import word32 AND_COMM_QT)
       
   540 
       
   541 lemma AND_ABSORB_QT: "EQUIV (OR a (AND a b)) a"
       
   542   by (import word32 AND_ABSORB_QT)
       
   543 
       
   544 lemma AND_IDEM_QT: "EQUIV (AND a a) a"
       
   545   by (import word32 AND_IDEM_QT)
       
   546 
       
   547 lemma OR_COMP_QT: "EQUIV (OR a (ONE_COMP a)) COMP0"
       
   548   by (import word32 OR_COMP_QT)
       
   549 
       
   550 lemma AND_COMP_QT: "EQUIV (AND a (ONE_COMP a)) 0"
       
   551   by (import word32 AND_COMP_QT)
       
   552 
       
   553 lemma ONE_COMP_QT: "EQUIV (ONE_COMP (ONE_COMP a)) a"
       
   554   by (import word32 ONE_COMP_QT)
       
   555 
       
   556 lemma RIGHT_AND_OVER_OR_QT: "EQUIV (AND (OR a b) c) (OR (AND a c) (AND b c))"
       
   557   by (import word32 RIGHT_AND_OVER_OR_QT)
       
   558 
       
   559 lemma RIGHT_OR_OVER_AND_QT: "EQUIV (OR (AND a b) c) (AND (OR a c) (OR b c))"
       
   560   by (import word32 RIGHT_OR_OVER_AND_QT)
       
   561 
       
   562 lemma DE_MORGAN_THM_QT: "EQUIV (ONE_COMP (AND a b)) (OR (ONE_COMP a) (ONE_COMP b)) &
       
   563 EQUIV (ONE_COMP (OR a b)) (AND (ONE_COMP a) (ONE_COMP b))"
       
   564   by (import word32 DE_MORGAN_THM_QT)
       
   565 
       
   566 lemma BIT_EQUIV: "[| n < WL; EQUIV a b |] ==> bit n a = bit n b"
       
   567   by (import word32 BIT_EQUIV)
       
   568 
       
   569 lemma LSB_WELLDEF: "EQUIV a b ==> LSBn a = LSBn b"
       
   570   by (import word32 LSB_WELLDEF)
       
   571 
       
   572 lemma MSB_WELLDEF: "EQUIV a b ==> MSBn a = MSBn b"
       
   573   by (import word32 MSB_WELLDEF)
       
   574 
       
   575 lemma BITWISE_ISTEP: "0 < n
       
   576 ==> BITWISE n oper (a div 2) (b div 2) =
       
   577     BITWISE n oper a b div 2 + SBIT (oper (bit n a) (bit n b)) (n - 1)"
       
   578   by (import word32 BITWISE_ISTEP)
       
   579 
       
   580 lemma BITWISE_EVAL: "BITWISE (Suc n) oper a b =
       
   581 2 * BITWISE n oper (a div 2) (b div 2) + SBIT (oper (LSBn a) (LSBn b)) 0"
       
   582   by (import word32 BITWISE_EVAL)
       
   583 
       
   584 lemma BITWISE_WELLDEF: "EQUIV a b & EQUIV c d ==> EQUIV (BITWISE n oper a c) (BITWISE n oper b d)"
       
   585   by (import word32 BITWISE_WELLDEF)
       
   586 
       
   587 lemma BITWISEw_WELLDEF: "EQUIV a b & EQUIV c d ==> EQUIV (BITWISE WL oper a c) (BITWISE WL oper b d)"
       
   588   by (import word32 BITWISEw_WELLDEF)
       
   589 
       
   590 lemma SUC_WELLDEF: "EQUIV a b ==> EQUIV (Suc a) (Suc b)"
       
   591   by (import word32 SUC_WELLDEF)
       
   592 
       
   593 lemma ADD_WELLDEF: "EQUIV a b & EQUIV c d ==> EQUIV (a + c) (b + d)"
       
   594   by (import word32 ADD_WELLDEF)
       
   595 
       
   596 lemma MUL_WELLDEF: "EQUIV a b & EQUIV c d ==> EQUIV (a * c) (b * d)"
       
   597   by (import word32 MUL_WELLDEF)
       
   598 
       
   599 lemma ONE_COMP_WELLDEF: "EQUIV a b ==> EQUIV (ONE_COMP a) (ONE_COMP b)"
       
   600   by (import word32 ONE_COMP_WELLDEF)
       
   601 
       
   602 lemma TWO_COMP_WELLDEF: "EQUIV a b ==> EQUIV (TWO_COMP a) (TWO_COMP b)"
       
   603   by (import word32 TWO_COMP_WELLDEF)
       
   604 
       
   605 lemma TOw_WELLDEF: "EQUIV a b ==> EQUIV (MODw a) (MODw b)"
       
   606   by (import word32 TOw_WELLDEF)
       
   607 
       
   608 consts
       
   609   LSR_ONE :: "nat => nat" 
       
   610 
       
   611 defs
       
   612   LSR_ONE_primdef: "LSR_ONE == %a. MODw a div 2"
       
   613 
       
   614 lemma LSR_ONE_def: "LSR_ONE a = MODw a div 2"
       
   615   by (import word32 LSR_ONE_def)
       
   616 
       
   617 consts
       
   618   ASR_ONE :: "nat => nat" 
       
   619 
       
   620 defs
       
   621   ASR_ONE_primdef: "ASR_ONE == %a. LSR_ONE a + SBIT (MSBn a) HB"
       
   622 
       
   623 lemma ASR_ONE_def: "ASR_ONE a = LSR_ONE a + SBIT (MSBn a) HB"
       
   624   by (import word32 ASR_ONE_def)
       
   625 
       
   626 consts
       
   627   ROR_ONE :: "nat => nat" 
       
   628 
       
   629 defs
       
   630   ROR_ONE_primdef: "ROR_ONE == %a. LSR_ONE a + SBIT (LSBn a) HB"
       
   631 
       
   632 lemma ROR_ONE_def: "ROR_ONE a = LSR_ONE a + SBIT (LSBn a) HB"
       
   633   by (import word32 ROR_ONE_def)
       
   634 
       
   635 consts
       
   636   RRXn :: "bool => nat => nat" 
       
   637 
       
   638 defs
       
   639   RRXn_primdef: "RRXn == %c a. LSR_ONE a + SBIT c HB"
       
   640 
       
   641 lemma RRXn_def: "RRXn c a = LSR_ONE a + SBIT c HB"
       
   642   by (import word32 RRXn_def)
       
   643 
       
   644 lemma LSR_ONE_WELLDEF: "EQUIV a b ==> EQUIV (LSR_ONE a) (LSR_ONE b)"
       
   645   by (import word32 LSR_ONE_WELLDEF)
       
   646 
       
   647 lemma ASR_ONE_WELLDEF: "EQUIV a b ==> EQUIV (ASR_ONE a) (ASR_ONE b)"
       
   648   by (import word32 ASR_ONE_WELLDEF)
       
   649 
       
   650 lemma ROR_ONE_WELLDEF: "EQUIV a b ==> EQUIV (ROR_ONE a) (ROR_ONE b)"
       
   651   by (import word32 ROR_ONE_WELLDEF)
       
   652 
       
   653 lemma RRX_WELLDEF: "EQUIV a b ==> EQUIV (RRXn c a) (RRXn c b)"
       
   654   by (import word32 RRX_WELLDEF)
       
   655 
       
   656 lemma LSR_ONE: "LSR_ONE = BITS HB 1"
       
   657   by (import word32 LSR_ONE)
       
   658 
       
   659 typedef (open) word32 = "{x::nat => bool. EX xa. x = EQUIV xa}" 
       
   660   by (rule typedef_helper,import word32 word32_TY_DEF)
       
   661 
       
   662 lemmas word32_TY_DEF = typedef_hol2hol4 [OF type_definition_word32]
       
   663 
       
   664 consts
       
   665   mk_word32 :: "(nat => bool) => word32" 
       
   666   dest_word32 :: "word32 => nat => bool" 
       
   667 
       
   668 specification (dest_word32 mk_word32) word32_tybij: "(ALL a. mk_word32 (dest_word32 a) = a) &
       
   669 (ALL r. (EX x. r = EQUIV x) = (dest_word32 (mk_word32 r) = r))"
       
   670   by (import word32 word32_tybij)
       
   671 
       
   672 consts
       
   673   w_0 :: "word32" 
       
   674 
       
   675 defs
       
   676   w_0_primdef: "w_0 == mk_word32 (EQUIV 0)"
       
   677 
       
   678 lemma w_0_def: "w_0 = mk_word32 (EQUIV 0)"
       
   679   by (import word32 w_0_def)
       
   680 
       
   681 consts
       
   682   w_1 :: "word32" 
       
   683 
       
   684 defs
       
   685   w_1_primdef: "w_1 == mk_word32 (EQUIV AONE)"
       
   686 
       
   687 lemma w_1_def: "w_1 = mk_word32 (EQUIV AONE)"
       
   688   by (import word32 w_1_def)
       
   689 
       
   690 consts
       
   691   w_T :: "word32" 
       
   692 
       
   693 defs
       
   694   w_T_primdef: "w_T == mk_word32 (EQUIV COMP0)"
       
   695 
       
   696 lemma w_T_def: "w_T = mk_word32 (EQUIV COMP0)"
       
   697   by (import word32 w_T_def)
       
   698 
       
   699 definition
       
   700   word_suc :: "word32 => word32"  where
       
   701   "word_suc == %T1. mk_word32 (EQUIV (Suc (Eps (dest_word32 T1))))"
       
   702 
       
   703 lemma word_suc: "word_suc T1 = mk_word32 (EQUIV (Suc (Eps (dest_word32 T1))))"
       
   704   by (import word32 word_suc)
       
   705 
       
   706 definition
       
   707   word_add :: "word32 => word32 => word32"  where
       
   708   "word_add ==
       
   709 %T1 T2. mk_word32 (EQUIV (Eps (dest_word32 T1) + Eps (dest_word32 T2)))"
       
   710 
       
   711 lemma word_add: "word_add T1 T2 =
       
   712 mk_word32 (EQUIV (Eps (dest_word32 T1) + Eps (dest_word32 T2)))"
       
   713   by (import word32 word_add)
       
   714 
       
   715 definition
       
   716   word_mul :: "word32 => word32 => word32"  where
       
   717   "word_mul ==
       
   718 %T1 T2. mk_word32 (EQUIV (Eps (dest_word32 T1) * Eps (dest_word32 T2)))"
       
   719 
       
   720 lemma word_mul: "word_mul T1 T2 =
       
   721 mk_word32 (EQUIV (Eps (dest_word32 T1) * Eps (dest_word32 T2)))"
       
   722   by (import word32 word_mul)
       
   723 
       
   724 definition
       
   725   word_1comp :: "word32 => word32"  where
       
   726   "word_1comp == %T1. mk_word32 (EQUIV (ONE_COMP (Eps (dest_word32 T1))))"
       
   727 
       
   728 lemma word_1comp: "word_1comp T1 = mk_word32 (EQUIV (ONE_COMP (Eps (dest_word32 T1))))"
       
   729   by (import word32 word_1comp)
       
   730 
       
   731 definition
       
   732   word_2comp :: "word32 => word32"  where
       
   733   "word_2comp == %T1. mk_word32 (EQUIV (TWO_COMP (Eps (dest_word32 T1))))"
       
   734 
       
   735 lemma word_2comp: "word_2comp T1 = mk_word32 (EQUIV (TWO_COMP (Eps (dest_word32 T1))))"
       
   736   by (import word32 word_2comp)
       
   737 
       
   738 definition
       
   739   word_lsr1 :: "word32 => word32"  where
       
   740   "word_lsr1 == %T1. mk_word32 (EQUIV (LSR_ONE (Eps (dest_word32 T1))))"
       
   741 
       
   742 lemma word_lsr1: "word_lsr1 T1 = mk_word32 (EQUIV (LSR_ONE (Eps (dest_word32 T1))))"
       
   743   by (import word32 word_lsr1)
       
   744 
       
   745 definition
       
   746   word_asr1 :: "word32 => word32"  where
       
   747   "word_asr1 == %T1. mk_word32 (EQUIV (ASR_ONE (Eps (dest_word32 T1))))"
       
   748 
       
   749 lemma word_asr1: "word_asr1 T1 = mk_word32 (EQUIV (ASR_ONE (Eps (dest_word32 T1))))"
       
   750   by (import word32 word_asr1)
       
   751 
       
   752 definition
       
   753   word_ror1 :: "word32 => word32"  where
       
   754   "word_ror1 == %T1. mk_word32 (EQUIV (ROR_ONE (Eps (dest_word32 T1))))"
       
   755 
       
   756 lemma word_ror1: "word_ror1 T1 = mk_word32 (EQUIV (ROR_ONE (Eps (dest_word32 T1))))"
       
   757   by (import word32 word_ror1)
       
   758 
       
   759 consts
       
   760   RRX :: "bool => word32 => word32" 
       
   761 
       
   762 defs
       
   763   RRX_primdef: "RRX == %T1 T2. mk_word32 (EQUIV (RRXn T1 (Eps (dest_word32 T2))))"
       
   764 
       
   765 lemma RRX_def: "RRX T1 T2 = mk_word32 (EQUIV (RRXn T1 (Eps (dest_word32 T2))))"
       
   766   by (import word32 RRX_def)
       
   767 
       
   768 consts
       
   769   LSB :: "word32 => bool" 
       
   770 
       
   771 defs
       
   772   LSB_primdef: "LSB == %T1. LSBn (Eps (dest_word32 T1))"
       
   773 
       
   774 lemma LSB_def: "LSB T1 = LSBn (Eps (dest_word32 T1))"
       
   775   by (import word32 LSB_def)
       
   776 
       
   777 consts
       
   778   MSB :: "word32 => bool" 
       
   779 
       
   780 defs
       
   781   MSB_primdef: "MSB == %T1. MSBn (Eps (dest_word32 T1))"
       
   782 
       
   783 lemma MSB_def: "MSB T1 = MSBn (Eps (dest_word32 T1))"
       
   784   by (import word32 MSB_def)
       
   785 
       
   786 definition
       
   787   bitwise_or :: "word32 => word32 => word32"  where
       
   788   "bitwise_or ==
       
   789 %T1 T2. mk_word32 (EQUIV (OR (Eps (dest_word32 T1)) (Eps (dest_word32 T2))))"
       
   790 
       
   791 lemma bitwise_or: "bitwise_or T1 T2 =
       
   792 mk_word32 (EQUIV (OR (Eps (dest_word32 T1)) (Eps (dest_word32 T2))))"
       
   793   by (import word32 bitwise_or)
       
   794 
       
   795 definition
       
   796   bitwise_eor :: "word32 => word32 => word32"  where
       
   797   "bitwise_eor ==
       
   798 %T1 T2.
       
   799    mk_word32 (EQUIV (EOR (Eps (dest_word32 T1)) (Eps (dest_word32 T2))))"
       
   800 
       
   801 lemma bitwise_eor: "bitwise_eor T1 T2 =
       
   802 mk_word32 (EQUIV (EOR (Eps (dest_word32 T1)) (Eps (dest_word32 T2))))"
       
   803   by (import word32 bitwise_eor)
       
   804 
       
   805 definition
       
   806   bitwise_and :: "word32 => word32 => word32"  where
       
   807   "bitwise_and ==
       
   808 %T1 T2.
       
   809    mk_word32 (EQUIV (AND (Eps (dest_word32 T1)) (Eps (dest_word32 T2))))"
       
   810 
       
   811 lemma bitwise_and: "bitwise_and T1 T2 =
       
   812 mk_word32 (EQUIV (AND (Eps (dest_word32 T1)) (Eps (dest_word32 T2))))"
       
   813   by (import word32 bitwise_and)
       
   814 
       
   815 consts
       
   816   TOw :: "word32 => word32" 
       
   817 
       
   818 defs
       
   819   TOw_primdef: "TOw == %T1. mk_word32 (EQUIV (MODw (Eps (dest_word32 T1))))"
       
   820 
       
   821 lemma TOw_def: "TOw T1 = mk_word32 (EQUIV (MODw (Eps (dest_word32 T1))))"
       
   822   by (import word32 TOw_def)
       
   823 
       
   824 consts
       
   825   n2w :: "nat => word32" 
       
   826 
       
   827 defs
       
   828   n2w_primdef: "n2w == %n. mk_word32 (EQUIV n)"
       
   829 
       
   830 lemma n2w_def: "n2w n = mk_word32 (EQUIV n)"
       
   831   by (import word32 n2w_def)
       
   832 
       
   833 consts
       
   834   w2n :: "word32 => nat" 
       
   835 
       
   836 defs
       
   837   w2n_primdef: "w2n == %w. MODw (Eps (dest_word32 w))"
       
   838 
       
   839 lemma w2n_def: "w2n w = MODw (Eps (dest_word32 w))"
       
   840   by (import word32 w2n_def)
       
   841 
       
   842 lemma ADDw: "(ALL x. word_add w_0 x = x) &
       
   843 (ALL x xa. word_add (word_suc x) xa = word_suc (word_add x xa))"
       
   844   by (import word32 ADDw)
       
   845 
       
   846 lemma ADD_0w: "word_add x w_0 = x"
       
   847   by (import word32 ADD_0w)
       
   848 
       
   849 lemma ADD1w: "word_suc x = word_add x w_1"
       
   850   by (import word32 ADD1w)
       
   851 
       
   852 lemma ADD_ASSOCw: "word_add x (word_add xa xb) = word_add (word_add x xa) xb"
       
   853   by (import word32 ADD_ASSOCw)
       
   854 
       
   855 lemma ADD_CLAUSESw: "(ALL x. word_add w_0 x = x) &
       
   856 (ALL x. word_add x w_0 = x) &
       
   857 (ALL x xa. word_add (word_suc x) xa = word_suc (word_add x xa)) &
       
   858 (ALL x xa. word_add x (word_suc xa) = word_suc (word_add x xa))"
       
   859   by (import word32 ADD_CLAUSESw)
       
   860 
       
   861 lemma ADD_COMMw: "word_add x xa = word_add xa x"
       
   862   by (import word32 ADD_COMMw)
       
   863 
       
   864 lemma ADD_INV_0_EQw: "(word_add x xa = x) = (xa = w_0)"
       
   865   by (import word32 ADD_INV_0_EQw)
       
   866 
       
   867 lemma EQ_ADD_LCANCELw: "(word_add x xa = word_add x xb) = (xa = xb)"
       
   868   by (import word32 EQ_ADD_LCANCELw)
       
   869 
       
   870 lemma EQ_ADD_RCANCELw: "(word_add x xb = word_add xa xb) = (x = xa)"
       
   871   by (import word32 EQ_ADD_RCANCELw)
       
   872 
       
   873 lemma LEFT_ADD_DISTRIBw: "word_mul xb (word_add x xa) = word_add (word_mul xb x) (word_mul xb xa)"
       
   874   by (import word32 LEFT_ADD_DISTRIBw)
       
   875 
       
   876 lemma MULT_ASSOCw: "word_mul x (word_mul xa xb) = word_mul (word_mul x xa) xb"
       
   877   by (import word32 MULT_ASSOCw)
       
   878 
       
   879 lemma MULT_COMMw: "word_mul x xa = word_mul xa x"
       
   880   by (import word32 MULT_COMMw)
       
   881 
       
   882 lemma MULT_CLAUSESw: "word_mul w_0 x = w_0 &
       
   883 word_mul x w_0 = w_0 &
       
   884 word_mul w_1 x = x &
       
   885 word_mul x w_1 = x &
       
   886 word_mul (word_suc x) xa = word_add (word_mul x xa) xa &
       
   887 word_mul x (word_suc xa) = word_add x (word_mul x xa)"
       
   888   by (import word32 MULT_CLAUSESw)
       
   889 
       
   890 lemma TWO_COMP_ONE_COMP: "word_2comp x = word_add (word_1comp x) w_1"
       
   891   by (import word32 TWO_COMP_ONE_COMP)
       
   892 
       
   893 lemma OR_ASSOCw: "bitwise_or x (bitwise_or xa xb) = bitwise_or (bitwise_or x xa) xb"
       
   894   by (import word32 OR_ASSOCw)
       
   895 
       
   896 lemma OR_COMMw: "bitwise_or x xa = bitwise_or xa x"
       
   897   by (import word32 OR_COMMw)
       
   898 
       
   899 lemma OR_IDEMw: "bitwise_or x x = x"
       
   900   by (import word32 OR_IDEMw)
       
   901 
       
   902 lemma OR_ABSORBw: "bitwise_and x (bitwise_or x xa) = x"
       
   903   by (import word32 OR_ABSORBw)
       
   904 
       
   905 lemma AND_ASSOCw: "bitwise_and x (bitwise_and xa xb) = bitwise_and (bitwise_and x xa) xb"
       
   906   by (import word32 AND_ASSOCw)
       
   907 
       
   908 lemma AND_COMMw: "bitwise_and x xa = bitwise_and xa x"
       
   909   by (import word32 AND_COMMw)
       
   910 
       
   911 lemma AND_IDEMw: "bitwise_and x x = x"
       
   912   by (import word32 AND_IDEMw)
       
   913 
       
   914 lemma AND_ABSORBw: "bitwise_or x (bitwise_and x xa) = x"
       
   915   by (import word32 AND_ABSORBw)
       
   916 
       
   917 lemma ONE_COMPw: "word_1comp (word_1comp x) = x"
       
   918   by (import word32 ONE_COMPw)
       
   919 
       
   920 lemma RIGHT_AND_OVER_ORw: "bitwise_and (bitwise_or x xa) xb =
       
   921 bitwise_or (bitwise_and x xb) (bitwise_and xa xb)"
       
   922   by (import word32 RIGHT_AND_OVER_ORw)
       
   923 
       
   924 lemma RIGHT_OR_OVER_ANDw: "bitwise_or (bitwise_and x xa) xb =
       
   925 bitwise_and (bitwise_or x xb) (bitwise_or xa xb)"
       
   926   by (import word32 RIGHT_OR_OVER_ANDw)
       
   927 
       
   928 lemma DE_MORGAN_THMw: "word_1comp (bitwise_and x xa) = bitwise_or (word_1comp x) (word_1comp xa) &
       
   929 word_1comp (bitwise_or x xa) = bitwise_and (word_1comp x) (word_1comp xa)"
       
   930   by (import word32 DE_MORGAN_THMw)
       
   931 
       
   932 lemma w_0: "w_0 = n2w 0"
       
   933   by (import word32 w_0)
       
   934 
       
   935 lemma w_1: "w_1 = n2w 1"
       
   936   by (import word32 w_1)
       
   937 
       
   938 lemma w_T: "w_T =
       
   939 n2w (NUMERAL
       
   940       (NUMERAL_BIT1
       
   941         (NUMERAL_BIT1
       
   942           (NUMERAL_BIT1
       
   943             (NUMERAL_BIT1
       
   944               (NUMERAL_BIT1
       
   945                 (NUMERAL_BIT1
       
   946                   (NUMERAL_BIT1
       
   947                     (NUMERAL_BIT1
       
   948                       (NUMERAL_BIT1
       
   949                         (NUMERAL_BIT1
       
   950                           (NUMERAL_BIT1
       
   951                             (NUMERAL_BIT1
       
   952                               (NUMERAL_BIT1
       
   953                                 (NUMERAL_BIT1
       
   954                                   (NUMERAL_BIT1
       
   955                                     (NUMERAL_BIT1
       
   956 (NUMERAL_BIT1
       
   957   (NUMERAL_BIT1
       
   958     (NUMERAL_BIT1
       
   959       (NUMERAL_BIT1
       
   960         (NUMERAL_BIT1
       
   961           (NUMERAL_BIT1
       
   962             (NUMERAL_BIT1
       
   963               (NUMERAL_BIT1
       
   964                 (NUMERAL_BIT1
       
   965                   (NUMERAL_BIT1
       
   966                     (NUMERAL_BIT1
       
   967                       (NUMERAL_BIT1
       
   968                         (NUMERAL_BIT1
       
   969                           (NUMERAL_BIT1
       
   970                             (NUMERAL_BIT1
       
   971                               (NUMERAL_BIT1
       
   972                                 ALT_ZERO)))))))))))))))))))))))))))))))))"
       
   973   by (import word32 w_T)
       
   974 
       
   975 lemma ADD_TWO_COMP: "word_add x (word_2comp x) = w_0"
       
   976   by (import word32 ADD_TWO_COMP)
       
   977 
       
   978 lemma ADD_TWO_COMP2: "word_add (word_2comp x) x = w_0"
       
   979   by (import word32 ADD_TWO_COMP2)
       
   980 
       
   981 definition
       
   982   word_sub :: "word32 => word32 => word32"  where
       
   983   "word_sub == %a b. word_add a (word_2comp b)"
       
   984 
       
   985 lemma word_sub: "word_sub a b = word_add a (word_2comp b)"
       
   986   by (import word32 word_sub)
       
   987 
       
   988 definition
       
   989   word_lsl :: "word32 => nat => word32"  where
       
   990   "word_lsl == %a n. word_mul a (n2w (2 ^ n))"
       
   991 
       
   992 lemma word_lsl: "word_lsl a n = word_mul a (n2w (2 ^ n))"
       
   993   by (import word32 word_lsl)
       
   994 
       
   995 definition
       
   996   word_lsr :: "word32 => nat => word32"  where
       
   997   "word_lsr == %a n. (word_lsr1 ^^ n) a"
       
   998 
       
   999 lemma word_lsr: "word_lsr a n = (word_lsr1 ^^ n) a"
       
  1000   by (import word32 word_lsr)
       
  1001 
       
  1002 definition
       
  1003   word_asr :: "word32 => nat => word32"  where
       
  1004   "word_asr == %a n. (word_asr1 ^^ n) a"
       
  1005 
       
  1006 lemma word_asr: "word_asr a n = (word_asr1 ^^ n) a"
       
  1007   by (import word32 word_asr)
       
  1008 
       
  1009 definition
       
  1010   word_ror :: "word32 => nat => word32"  where
       
  1011   "word_ror == %a n. (word_ror1 ^^ n) a"
       
  1012 
       
  1013 lemma word_ror: "word_ror a n = (word_ror1 ^^ n) a"
       
  1014   by (import word32 word_ror)
       
  1015 
       
  1016 consts
       
  1017   BITw :: "nat => word32 => bool" 
       
  1018 
       
  1019 defs
       
  1020   BITw_primdef: "BITw == %b n. bit b (w2n n)"
       
  1021 
       
  1022 lemma BITw_def: "BITw b n = bit b (w2n n)"
       
  1023   by (import word32 BITw_def)
       
  1024 
       
  1025 consts
       
  1026   BITSw :: "nat => nat => word32 => nat" 
       
  1027 
       
  1028 defs
       
  1029   BITSw_primdef: "BITSw == %h l n. BITS h l (w2n n)"
       
  1030 
       
  1031 lemma BITSw_def: "BITSw h l n = BITS h l (w2n n)"
       
  1032   by (import word32 BITSw_def)
       
  1033 
       
  1034 consts
       
  1035   SLICEw :: "nat => nat => word32 => nat" 
       
  1036 
       
  1037 defs
       
  1038   SLICEw_primdef: "SLICEw == %h l n. SLICE h l (w2n n)"
       
  1039 
       
  1040 lemma SLICEw_def: "SLICEw h l n = SLICE h l (w2n n)"
       
  1041   by (import word32 SLICEw_def)
       
  1042 
       
  1043 lemma TWO_COMP_ADD: "word_2comp (word_add a b) = word_add (word_2comp a) (word_2comp b)"
       
  1044   by (import word32 TWO_COMP_ADD)
       
  1045 
       
  1046 lemma TWO_COMP_ELIM: "word_2comp (word_2comp a) = a"
       
  1047   by (import word32 TWO_COMP_ELIM)
       
  1048 
       
  1049 lemma ADD_SUB_ASSOC: "word_sub (word_add a b) c = word_add a (word_sub b c)"
       
  1050   by (import word32 ADD_SUB_ASSOC)
       
  1051 
       
  1052 lemma ADD_SUB_SYM: "word_sub (word_add a b) c = word_add (word_sub a c) b"
       
  1053   by (import word32 ADD_SUB_SYM)
       
  1054 
       
  1055 lemma SUB_EQUALw: "word_sub a a = w_0"
       
  1056   by (import word32 SUB_EQUALw)
       
  1057 
       
  1058 lemma ADD_SUBw: "word_sub (word_add a b) b = a"
       
  1059   by (import word32 ADD_SUBw)
       
  1060 
       
  1061 lemma SUB_SUBw: "word_sub a (word_sub b c) = word_sub (word_add a c) b"
       
  1062   by (import word32 SUB_SUBw)
       
  1063 
       
  1064 lemma ONE_COMP_TWO_COMP: "word_1comp a = word_sub (word_2comp a) w_1"
       
  1065   by (import word32 ONE_COMP_TWO_COMP)
       
  1066 
       
  1067 lemma SUBw: "word_sub (word_suc m) n = word_suc (word_sub m n)"
       
  1068   by (import word32 SUBw)
       
  1069 
       
  1070 lemma ADD_EQ_SUBw: "(word_add m n = p) = (m = word_sub p n)"
       
  1071   by (import word32 ADD_EQ_SUBw)
       
  1072 
       
  1073 lemma CANCEL_SUBw: "(word_sub n p = word_sub m p) = (n = m)"
       
  1074   by (import word32 CANCEL_SUBw)
       
  1075 
       
  1076 lemma SUB_PLUSw: "word_sub a (word_add b c) = word_sub (word_sub a b) c"
       
  1077   by (import word32 SUB_PLUSw)
       
  1078 
       
  1079 lemma word_nchotomy: "EX n. w = n2w n"
       
  1080   by (import word32 word_nchotomy)
       
  1081 
       
  1082 lemma dest_word_mk_word_eq3: "dest_word32 (mk_word32 (EQUIV a)) = EQUIV a"
       
  1083   by (import word32 dest_word_mk_word_eq3)
       
  1084 
       
  1085 lemma MODw_ELIM: "n2w (MODw n) = n2w n"
       
  1086   by (import word32 MODw_ELIM)
       
  1087 
       
  1088 lemma w2n_EVAL: "w2n (n2w n) = MODw n"
       
  1089   by (import word32 w2n_EVAL)
       
  1090 
       
  1091 lemma w2n_ELIM: "n2w (w2n a) = a"
       
  1092   by (import word32 w2n_ELIM)
       
  1093 
       
  1094 lemma n2w_11: "(n2w a = n2w b) = (MODw a = MODw b)"
       
  1095   by (import word32 n2w_11)
       
  1096 
       
  1097 lemma ADD_EVAL: "word_add (n2w a) (n2w b) = n2w (a + b)"
       
  1098   by (import word32 ADD_EVAL)
       
  1099 
       
  1100 lemma MUL_EVAL: "word_mul (n2w a) (n2w b) = n2w (a * b)"
       
  1101   by (import word32 MUL_EVAL)
       
  1102 
       
  1103 lemma ONE_COMP_EVAL: "word_1comp (n2w a) = n2w (ONE_COMP a)"
       
  1104   by (import word32 ONE_COMP_EVAL)
       
  1105 
       
  1106 lemma TWO_COMP_EVAL: "word_2comp (n2w a) = n2w (TWO_COMP a)"
       
  1107   by (import word32 TWO_COMP_EVAL)
       
  1108 
       
  1109 lemma LSR_ONE_EVAL: "word_lsr1 (n2w a) = n2w (LSR_ONE a)"
       
  1110   by (import word32 LSR_ONE_EVAL)
       
  1111 
       
  1112 lemma ASR_ONE_EVAL: "word_asr1 (n2w a) = n2w (ASR_ONE a)"
       
  1113   by (import word32 ASR_ONE_EVAL)
       
  1114 
       
  1115 lemma ROR_ONE_EVAL: "word_ror1 (n2w a) = n2w (ROR_ONE a)"
       
  1116   by (import word32 ROR_ONE_EVAL)
       
  1117 
       
  1118 lemma RRX_EVAL: "RRX c (n2w a) = n2w (RRXn c a)"
       
  1119   by (import word32 RRX_EVAL)
       
  1120 
       
  1121 lemma LSB_EVAL: "LSB (n2w a) = LSBn a"
       
  1122   by (import word32 LSB_EVAL)
       
  1123 
       
  1124 lemma MSB_EVAL: "MSB (n2w a) = MSBn a"
       
  1125   by (import word32 MSB_EVAL)
       
  1126 
       
  1127 lemma OR_EVAL: "bitwise_or (n2w a) (n2w b) = n2w (OR a b)"
       
  1128   by (import word32 OR_EVAL)
       
  1129 
       
  1130 lemma EOR_EVAL: "bitwise_eor (n2w a) (n2w b) = n2w (EOR a b)"
       
  1131   by (import word32 EOR_EVAL)
       
  1132 
       
  1133 lemma AND_EVAL: "bitwise_and (n2w a) (n2w b) = n2w (AND a b)"
       
  1134   by (import word32 AND_EVAL)
       
  1135 
       
  1136 lemma BITS_EVAL: "BITSw h l (n2w a) = BITS h l (MODw a)"
       
  1137   by (import word32 BITS_EVAL)
       
  1138 
       
  1139 lemma BIT_EVAL: "BITw b (n2w a) = bit b (MODw a)"
       
  1140   by (import word32 BIT_EVAL)
       
  1141 
       
  1142 lemma SLICE_EVAL: "SLICEw h l (n2w a) = SLICE h l (MODw a)"
       
  1143   by (import word32 SLICE_EVAL)
       
  1144 
       
  1145 lemma LSL_ADD: "word_lsl (word_lsl a m) n = word_lsl a (m + n)"
       
  1146   by (import word32 LSL_ADD)
       
  1147 
       
  1148 lemma LSR_ADD: "word_lsr (word_lsr x xa) xb = word_lsr x (xa + xb)"
       
  1149   by (import word32 LSR_ADD)
       
  1150 
       
  1151 lemma ASR_ADD: "word_asr (word_asr x xa) xb = word_asr x (xa + xb)"
       
  1152   by (import word32 ASR_ADD)
       
  1153 
       
  1154 lemma ROR_ADD: "word_ror (word_ror x xa) xb = word_ror x (xa + xb)"
       
  1155   by (import word32 ROR_ADD)
       
  1156 
       
  1157 lemma LSL_LIMIT: "HB < n ==> word_lsl w n = w_0"
       
  1158   by (import word32 LSL_LIMIT)
       
  1159 
       
  1160 lemma MOD_MOD_DIV: "INw (MODw a div 2 ^ b)"
       
  1161   by (import word32 MOD_MOD_DIV)
       
  1162 
       
  1163 lemma MOD_MOD_DIV_2EXP: "MODw (MODw a div 2 ^ n) div 2 = MODw a div 2 ^ Suc n"
       
  1164   by (import word32 MOD_MOD_DIV_2EXP)
       
  1165 
       
  1166 lemma LSR_EVAL: "word_lsr (n2w a) n = n2w (MODw a div 2 ^ n)"
       
  1167   by (import word32 LSR_EVAL)
       
  1168 
       
  1169 lemma LSR_THM: "word_lsr (n2w n) x = n2w (BITS HB (min WL x) n)"
       
  1170   by (import word32 LSR_THM)
       
  1171 
       
  1172 lemma LSR_LIMIT: "HB < x ==> word_lsr w x = w_0"
       
  1173   by (import word32 LSR_LIMIT)
       
  1174 
       
  1175 lemma LEFT_SHIFT_LESS: "(a::nat) < (2::nat) ^ (m::nat)
       
  1176 ==> (2::nat) ^ (n::nat) + a * (2::nat) ^ n <= (2::nat) ^ (m + n)"
       
  1177   by (import word32 LEFT_SHIFT_LESS)
       
  1178 
       
  1179 lemma ROR_THM: "word_ror (n2w n) x =
       
  1180 (let x' = x mod WL
       
  1181  in n2w (BITS HB x' n + BITS (x' - 1) 0 n * 2 ^ (WL - x')))"
       
  1182   by (import word32 ROR_THM)
       
  1183 
       
  1184 lemma ROR_CYCLE: "word_ror w (x * WL) = w"
       
  1185   by (import word32 ROR_CYCLE)
       
  1186 
       
  1187 lemma ASR_THM: "word_asr (n2w n) x =
       
  1188 (let x' = min HB x; s = BITS HB x' n
       
  1189  in n2w (if MSBn n then 2 ^ WL - 2 ^ (WL - x') + s else s))"
       
  1190   by (import word32 ASR_THM)
       
  1191 
       
  1192 lemma ASR_LIMIT: "HB <= x ==> word_asr w x = (if MSB w then w_T else w_0)"
       
  1193   by (import word32 ASR_LIMIT)
       
  1194 
       
  1195 lemma ZERO_SHIFT: "(ALL n. word_lsl w_0 n = w_0) &
       
  1196 (ALL n. word_asr w_0 n = w_0) &
       
  1197 (ALL n. word_lsr w_0 n = w_0) & (ALL n. word_ror w_0 n = w_0)"
       
  1198   by (import word32 ZERO_SHIFT)
       
  1199 
       
  1200 lemma ZERO_SHIFT2: "(ALL a. word_lsl a 0 = a) &
       
  1201 (ALL a. word_asr a 0 = a) &
       
  1202 (ALL a. word_lsr a 0 = a) & (ALL a. word_ror a 0 = a)"
       
  1203   by (import word32 ZERO_SHIFT2)
       
  1204 
       
  1205 lemma ASR_w_T: "word_asr w_T n = w_T"
       
  1206   by (import word32 ASR_w_T)
       
  1207 
       
  1208 lemma ROR_w_T: "word_ror w_T n = w_T"
       
  1209   by (import word32 ROR_w_T)
       
  1210 
       
  1211 lemma MODw_EVAL: "MODw x =
       
  1212 x mod
       
  1213 NUMERAL
       
  1214  (NUMERAL_BIT2
       
  1215    (NUMERAL_BIT1
       
  1216      (NUMERAL_BIT1
       
  1217        (NUMERAL_BIT1
       
  1218          (NUMERAL_BIT1
       
  1219            (NUMERAL_BIT1
       
  1220              (NUMERAL_BIT1
       
  1221                (NUMERAL_BIT1
       
  1222                  (NUMERAL_BIT1
       
  1223                    (NUMERAL_BIT1
       
  1224                      (NUMERAL_BIT1
       
  1225                        (NUMERAL_BIT1
       
  1226                          (NUMERAL_BIT1
       
  1227                            (NUMERAL_BIT1
       
  1228                              (NUMERAL_BIT1
       
  1229                                (NUMERAL_BIT1
       
  1230                                  (NUMERAL_BIT1
       
  1231                                    (NUMERAL_BIT1
       
  1232                                      (NUMERAL_BIT1
       
  1233  (NUMERAL_BIT1
       
  1234    (NUMERAL_BIT1
       
  1235      (NUMERAL_BIT1
       
  1236        (NUMERAL_BIT1
       
  1237          (NUMERAL_BIT1
       
  1238            (NUMERAL_BIT1
       
  1239              (NUMERAL_BIT1
       
  1240                (NUMERAL_BIT1
       
  1241                  (NUMERAL_BIT1
       
  1242                    (NUMERAL_BIT1
       
  1243                      (NUMERAL_BIT1
       
  1244                        (NUMERAL_BIT1
       
  1245                          (NUMERAL_BIT1
       
  1246                            ALT_ZERO))))))))))))))))))))))))))))))))"
       
  1247   by (import word32 MODw_EVAL)
       
  1248 
       
  1249 lemma ADD_EVAL2: "word_add (n2w a) (n2w b) = n2w (MODw (a + b))"
       
  1250   by (import word32 ADD_EVAL2)
       
  1251 
       
  1252 lemma MUL_EVAL2: "word_mul (n2w a) (n2w b) = n2w (MODw (a * b))"
       
  1253   by (import word32 MUL_EVAL2)
       
  1254 
       
  1255 lemma ONE_COMP_EVAL2: "word_1comp (n2w a) =
       
  1256 n2w (2 ^
       
  1257      NUMERAL
       
  1258       (NUMERAL_BIT2
       
  1259         (NUMERAL_BIT1
       
  1260           (NUMERAL_BIT1 (NUMERAL_BIT1 (NUMERAL_BIT1 ALT_ZERO))))) -
       
  1261      1 -
       
  1262      MODw a)"
       
  1263   by (import word32 ONE_COMP_EVAL2)
       
  1264 
       
  1265 lemma TWO_COMP_EVAL2: "word_2comp (n2w a) =
       
  1266 n2w (MODw
       
  1267       (2 ^
       
  1268        NUMERAL
       
  1269         (NUMERAL_BIT2
       
  1270           (NUMERAL_BIT1
       
  1271             (NUMERAL_BIT1 (NUMERAL_BIT1 (NUMERAL_BIT1 ALT_ZERO))))) -
       
  1272        MODw a))"
       
  1273   by (import word32 TWO_COMP_EVAL2)
       
  1274 
       
  1275 lemma LSR_ONE_EVAL2: "word_lsr1 (n2w a) = n2w (MODw a div 2)"
       
  1276   by (import word32 LSR_ONE_EVAL2)
       
  1277 
       
  1278 lemma ASR_ONE_EVAL2: "word_asr1 (n2w a) =
       
  1279 n2w (MODw a div 2 +
       
  1280      SBIT (MSBn a)
       
  1281       (NUMERAL
       
  1282         (NUMERAL_BIT1
       
  1283           (NUMERAL_BIT1
       
  1284             (NUMERAL_BIT1 (NUMERAL_BIT1 (NUMERAL_BIT1 ALT_ZERO)))))))"
       
  1285   by (import word32 ASR_ONE_EVAL2)
       
  1286 
       
  1287 lemma ROR_ONE_EVAL2: "word_ror1 (n2w a) =
       
  1288 n2w (MODw a div 2 +
       
  1289      SBIT (LSBn a)
       
  1290       (NUMERAL
       
  1291         (NUMERAL_BIT1
       
  1292           (NUMERAL_BIT1
       
  1293             (NUMERAL_BIT1 (NUMERAL_BIT1 (NUMERAL_BIT1 ALT_ZERO)))))))"
       
  1294   by (import word32 ROR_ONE_EVAL2)
       
  1295 
       
  1296 lemma RRX_EVAL2: "RRX c (n2w a) =
       
  1297 n2w (MODw a div 2 +
       
  1298      SBIT c
       
  1299       (NUMERAL
       
  1300         (NUMERAL_BIT1
       
  1301           (NUMERAL_BIT1
       
  1302             (NUMERAL_BIT1 (NUMERAL_BIT1 (NUMERAL_BIT1 ALT_ZERO)))))))"
       
  1303   by (import word32 RRX_EVAL2)
       
  1304 
       
  1305 lemma LSB_EVAL2: "LSB (n2w a) = ODD a"
       
  1306   by (import word32 LSB_EVAL2)
       
  1307 
       
  1308 lemma MSB_EVAL2: "MSB (n2w a) =
       
  1309 bit (NUMERAL
       
  1310       (NUMERAL_BIT1
       
  1311         (NUMERAL_BIT1
       
  1312           (NUMERAL_BIT1 (NUMERAL_BIT1 (NUMERAL_BIT1 ALT_ZERO))))))
       
  1313  a"
       
  1314   by (import word32 MSB_EVAL2)
       
  1315 
       
  1316 lemma OR_EVAL2: "bitwise_or (n2w a) (n2w b) =
       
  1317 n2w (BITWISE
       
  1318       (NUMERAL
       
  1319         (NUMERAL_BIT2
       
  1320           (NUMERAL_BIT1
       
  1321             (NUMERAL_BIT1 (NUMERAL_BIT1 (NUMERAL_BIT1 ALT_ZERO))))))
       
  1322       op | a b)"
       
  1323   by (import word32 OR_EVAL2)
       
  1324 
       
  1325 lemma AND_EVAL2: "bitwise_and (n2w a) (n2w b) =
       
  1326 n2w (BITWISE
       
  1327       (NUMERAL
       
  1328         (NUMERAL_BIT2
       
  1329           (NUMERAL_BIT1
       
  1330             (NUMERAL_BIT1 (NUMERAL_BIT1 (NUMERAL_BIT1 ALT_ZERO))))))
       
  1331       op & a b)"
       
  1332   by (import word32 AND_EVAL2)
       
  1333 
       
  1334 lemma EOR_EVAL2: "bitwise_eor (n2w a) (n2w b) =
       
  1335 n2w (BITWISE
       
  1336       (NUMERAL
       
  1337         (NUMERAL_BIT2
       
  1338           (NUMERAL_BIT1
       
  1339             (NUMERAL_BIT1 (NUMERAL_BIT1 (NUMERAL_BIT1 ALT_ZERO))))))
       
  1340       op ~= a b)"
       
  1341   by (import word32 EOR_EVAL2)
       
  1342 
       
  1343 lemma BITWISE_EVAL2: "BITWISE n oper x y =
       
  1344 (if n = 0 then 0
       
  1345  else 2 * BITWISE (n - 1) oper (x div 2) (y div 2) +
       
  1346       (if oper (ODD x) (ODD y) then 1 else 0))"
       
  1347   by (import word32 BITWISE_EVAL2)
       
  1348 
       
  1349 lemma BITSwLT_THM: "BITSw h l n < 2 ^ (Suc h - l)"
       
  1350   by (import word32 BITSwLT_THM)
       
  1351 
       
  1352 lemma BITSw_COMP_THM: "h2 + l1 <= h1 ==> BITS h2 l2 (BITSw h1 l1 n) = BITSw (h2 + l1) (l2 + l1) n"
       
  1353   by (import word32 BITSw_COMP_THM)
       
  1354 
       
  1355 lemma BITSw_DIV_THM: "BITSw h l x div 2 ^ n = BITSw h (l + n) x"
       
  1356   by (import word32 BITSw_DIV_THM)
       
  1357 
       
  1358 lemma BITw_THM: "BITw b n = (BITSw b b n = 1)"
       
  1359   by (import word32 BITw_THM)
       
  1360 
       
  1361 lemma SLICEw_THM: "SLICEw h l n = BITSw h l n * 2 ^ l"
       
  1362   by (import word32 SLICEw_THM)
       
  1363 
       
  1364 lemma BITS_SLICEw_THM: "BITS h l (SLICEw h l n) = BITSw h l n"
       
  1365   by (import word32 BITS_SLICEw_THM)
       
  1366 
       
  1367 lemma SLICEw_ZERO_THM: "SLICEw h 0 n = BITSw h 0 n"
       
  1368   by (import word32 SLICEw_ZERO_THM)
       
  1369 
       
  1370 lemma SLICEw_COMP_THM: "Suc m <= h & l <= m ==> SLICEw h (Suc m) a + SLICEw m l a = SLICEw h l a"
       
  1371   by (import word32 SLICEw_COMP_THM)
       
  1372 
       
  1373 lemma BITSw_ZERO: "h < l ==> BITSw h l n = 0"
       
  1374   by (import word32 BITSw_ZERO)
       
  1375 
       
  1376 lemma SLICEw_ZERO: "h < l ==> SLICEw h l n = 0"
       
  1377   by (import word32 SLICEw_ZERO)
       
  1378 
       
  1379 ;end_setup
       
  1380 
       
  1381 end
       
  1382