src/ZF/ArithSimp.thy
changeset 69593 3dda49e08b9d
parent 63648 f9f3006a5579
child 69605 a96320074298
equal deleted inserted replaced
69592:a80d8ec6c998 69593:3dda49e08b9d
   183 apply (simp add: nat_into_Ord [THEN Ord_0_lt_iff])
   183 apply (simp add: nat_into_Ord [THEN Ord_0_lt_iff])
   184 apply (erule complete_induct)
   184 apply (erule complete_induct)
   185 apply (case_tac "x<n")
   185 apply (case_tac "x<n")
   186 txt\<open>case x<n\<close>
   186 txt\<open>case x<n\<close>
   187 apply (simp (no_asm_simp))
   187 apply (simp (no_asm_simp))
   188 txt\<open>case @{term"n \<le> x"}\<close>
   188 txt\<open>case \<^term>\<open>n \<le> x\<close>\<close>
   189 apply (simp add: not_lt_iff_le add_assoc mod_geq div_termination [THEN ltD] add_diff_inverse)
   189 apply (simp add: not_lt_iff_le add_assoc mod_geq div_termination [THEN ltD] add_diff_inverse)
   190 done
   190 done
   191 
   191 
   192 lemma mod_div_equality_natify: "(m div n)#*n #+ m mod n = natify(m)"
   192 lemma mod_div_equality_natify: "(m div n)#*n #+ m mod n = natify(m)"
   193 apply (subgoal_tac " (natify (m) div natify (n))#*natify (n) #+ natify (m) mod natify (n) = natify (m) ")
   193 apply (subgoal_tac " (natify (m) div natify (n))#*natify (n) #+ natify (m) mod natify (n) = natify (m) ")
   210 apply (erule complete_induct)
   210 apply (erule complete_induct)
   211 apply (case_tac "succ (x) <n")
   211 apply (case_tac "succ (x) <n")
   212 txt\<open>case succ(x) < n\<close>
   212 txt\<open>case succ(x) < n\<close>
   213  apply (simp (no_asm_simp) add: nat_le_refl [THEN lt_trans] succ_neq_self)
   213  apply (simp (no_asm_simp) add: nat_le_refl [THEN lt_trans] succ_neq_self)
   214  apply (simp add: ltD [THEN mem_imp_not_eq])
   214  apply (simp add: ltD [THEN mem_imp_not_eq])
   215 txt\<open>case @{term"n \<le> succ(x)"}\<close>
   215 txt\<open>case \<^term>\<open>n \<le> succ(x)\<close>\<close>
   216 apply (simp add: mod_geq not_lt_iff_le)
   216 apply (simp add: mod_geq not_lt_iff_le)
   217 apply (erule leE)
   217 apply (erule leE)
   218  apply (simp (no_asm_simp) add: mod_geq div_termination [THEN ltD] diff_succ)
   218  apply (simp (no_asm_simp) add: mod_geq div_termination [THEN ltD] diff_succ)
   219 txt\<open>equality case\<close>
   219 txt\<open>equality case\<close>
   220 apply (simp add: diff_self_eq_0)
   220 apply (simp add: diff_self_eq_0)
   233 
   233 
   234 lemma mod_less_divisor: "[| 0<n;  n:nat |] ==> m mod n < n"
   234 lemma mod_less_divisor: "[| 0<n;  n:nat |] ==> m mod n < n"
   235 apply (subgoal_tac "natify (m) mod n < n")
   235 apply (subgoal_tac "natify (m) mod n < n")
   236 apply (rule_tac [2] i = "natify (m) " in complete_induct)
   236 apply (rule_tac [2] i = "natify (m) " in complete_induct)
   237 apply (case_tac [3] "x<n", auto)
   237 apply (case_tac [3] "x<n", auto)
   238 txt\<open>case @{term"n \<le> x"}\<close>
   238 txt\<open>case \<^term>\<open>n \<le> x\<close>\<close>
   239 apply (simp add: mod_geq not_lt_iff_le div_termination [THEN ltD])
   239 apply (simp add: mod_geq not_lt_iff_le div_termination [THEN ltD])
   240 done
   240 done
   241 
   241 
   242 lemma mod_1_eq [simp]: "m mod 1 = 0"
   242 lemma mod_1_eq [simp]: "m mod 1 = 0"
   243 by (cut_tac n = 1 in mod_less_divisor, auto)
   243 by (cut_tac n = 1 in mod_less_divisor, auto)