equal
deleted
inserted
replaced
346 qed (rule complex_sgn_def dist_complex_def open_complex_def uniformity_complex_def)+ |
346 qed (rule complex_sgn_def dist_complex_def open_complex_def uniformity_complex_def)+ |
347 |
347 |
348 end |
348 end |
349 |
349 |
350 declare uniformity_Abort[where 'a = complex, code] |
350 declare uniformity_Abort[where 'a = complex, code] |
|
351 |
|
352 lemma Re_divide': "Re (x / y) = (Re x * Re y + Im x * Im y) / (norm y)\<^sup>2" |
|
353 by (simp add: Re_divide norm_complex_def) |
|
354 |
|
355 lemma Im_divide': "Im (x / y) = (Im x * Re y - Re x * Im y) / (norm y)\<^sup>2" |
|
356 by (simp add: Im_divide norm_complex_def) |
351 |
357 |
352 lemma norm_ii [simp]: "norm \<i> = 1" |
358 lemma norm_ii [simp]: "norm \<i> = 1" |
353 by (simp add: norm_complex_def) |
359 by (simp add: norm_complex_def) |
354 |
360 |
355 lemma cmod_unit_one: "cmod (cos a + \<i> * sin a) = 1" |
361 lemma cmod_unit_one: "cmod (cos a + \<i> * sin a) = 1" |