src/HOL/Probability/Lebesgue_Measure.thy
changeset 41689 3e39b0e730d6
parent 41661 baf1964bc468
child 41704 8c539202f854
equal deleted inserted replaced
41688:f9ff311992b6 41689:3e39b0e730d6
     1 (*  Author: Robert Himmelmann, TU Muenchen *)
     1 (*  Author: Robert Himmelmann, TU Muenchen *)
     2 header {* Lebsegue measure *}
     2 header {* Lebsegue measure *}
     3 theory Lebesgue_Measure
     3 theory Lebesgue_Measure
     4   imports Product_Measure Complete_Measure
     4   imports Product_Measure
     5 begin
     5 begin
     6 
     6 
     7 subsection {* Standard Cubes *}
     7 subsection {* Standard Cubes *}
     8 
     8 
     9 definition cube :: "nat \<Rightarrow> 'a::ordered_euclidean_space set" where
     9 definition cube :: "nat \<Rightarrow> 'a::ordered_euclidean_space set" where
    40   thus ?thesis apply-apply(rule that[where n=n])
    40   thus ?thesis apply-apply(rule that[where n=n])
    41     apply(rule ball_subset_cube[unfolded subset_eq,rule_format])
    41     apply(rule ball_subset_cube[unfolded subset_eq,rule_format])
    42     by (auto simp add:dist_norm)
    42     by (auto simp add:dist_norm)
    43 qed
    43 qed
    44 
    44 
    45 definition lebesgue :: "'a::ordered_euclidean_space algebra" where
    45 lemma cube_subset_Suc[intro]: "cube n \<subseteq> cube (Suc n)"
    46   "lebesgue = \<lparr> space = UNIV, sets = {A. \<forall>n. (indicator A :: 'a \<Rightarrow> real) integrable_on cube n} \<rparr>"
    46   unfolding cube_def_raw subset_eq apply safe unfolding mem_interval by auto
    47 
    47 
    48 definition "lmeasure A = (SUP n. Real (integral (cube n) (indicator A)))"
    48 lemma Pi_iff: "f \<in> Pi I X \<longleftrightarrow> (\<forall>i\<in>I. f i \<in> X i)"
       
    49   unfolding Pi_def by auto
       
    50 
       
    51 definition lebesgue :: "'a::ordered_euclidean_space measure_space" where
       
    52   "lebesgue = \<lparr> space = UNIV,
       
    53     sets = {A. \<forall>n. (indicator A :: 'a \<Rightarrow> real) integrable_on cube n},
       
    54     measure = \<lambda>A. SUP n. Real (integral (cube n) (indicator A)) \<rparr>"
    49 
    55 
    50 lemma space_lebesgue[simp]: "space lebesgue = UNIV"
    56 lemma space_lebesgue[simp]: "space lebesgue = UNIV"
    51   unfolding lebesgue_def by simp
    57   unfolding lebesgue_def by simp
    52 
    58 
    53 lemma lebesgueD: "A \<in> sets lebesgue \<Longrightarrow> (indicator A :: _ \<Rightarrow> real) integrable_on cube n"
    59 lemma lebesgueD: "A \<in> sets lebesgue \<Longrightarrow> (indicator A :: _ \<Rightarrow> real) integrable_on cube n"
   104         using absolutely_integrable_max[of ?f "cube n" ?g] A Suc by (simp add: *)
   110         using absolutely_integrable_max[of ?f "cube n" ?g] A Suc by (simp add: *)
   105     qed auto
   111     qed auto
   106   qed (auto intro: LIMSEQ_indicator_UN simp: cube_def)
   112   qed (auto intro: LIMSEQ_indicator_UN simp: cube_def)
   107 qed simp
   113 qed simp
   108 
   114 
   109 interpretation lebesgue: measure_space lebesgue lmeasure
   115 interpretation lebesgue: measure_space lebesgue
   110 proof
   116 proof
   111   have *: "indicator {} = (\<lambda>x. 0 :: real)" by (simp add: fun_eq_iff)
   117   have *: "indicator {} = (\<lambda>x. 0 :: real)" by (simp add: fun_eq_iff)
   112   show "lmeasure {} = 0" by (simp add: integral_0 * lmeasure_def)
   118   show "measure lebesgue {} = 0" by (simp add: integral_0 * lebesgue_def)
   113 next
   119 next
   114   show "countably_additive lebesgue lmeasure"
   120   show "countably_additive lebesgue (measure lebesgue)"
   115   proof (intro countably_additive_def[THEN iffD2] allI impI)
   121   proof (intro countably_additive_def[THEN iffD2] allI impI)
   116     fix A :: "nat \<Rightarrow> 'b set" assume rA: "range A \<subseteq> sets lebesgue" "disjoint_family A"
   122     fix A :: "nat \<Rightarrow> 'b set" assume rA: "range A \<subseteq> sets lebesgue" "disjoint_family A"
   117     then have A[simp, intro]: "\<And>i n. (indicator (A i) :: _ \<Rightarrow> real) integrable_on cube n"
   123     then have A[simp, intro]: "\<And>i n. (indicator (A i) :: _ \<Rightarrow> real) integrable_on cube n"
   118       by (auto dest: lebesgueD)
   124       by (auto dest: lebesgueD)
   119     let "?m n i" = "integral (cube n) (indicator (A i) :: _\<Rightarrow>real)"
   125     let "?m n i" = "integral (cube n) (indicator (A i) :: _\<Rightarrow>real)"
   120     let "?M n I" = "integral (cube n) (indicator (\<Union>i\<in>I. A i) :: _\<Rightarrow>real)"
   126     let "?M n I" = "integral (cube n) (indicator (\<Union>i\<in>I. A i) :: _\<Rightarrow>real)"
   121     have nn[simp, intro]: "\<And>i n. 0 \<le> ?m n i" by (auto intro!: integral_nonneg)
   127     have nn[simp, intro]: "\<And>i n. 0 \<le> ?m n i" by (auto intro!: integral_nonneg)
   122     assume "(\<Union>i. A i) \<in> sets lebesgue"
   128     assume "(\<Union>i. A i) \<in> sets lebesgue"
   123     then have UN_A[simp, intro]: "\<And>i n. (indicator (\<Union>i. A i) :: _ \<Rightarrow> real) integrable_on cube n"
   129     then have UN_A[simp, intro]: "\<And>i n. (indicator (\<Union>i. A i) :: _ \<Rightarrow> real) integrable_on cube n"
   124       by (auto dest: lebesgueD)
   130       by (auto dest: lebesgueD)
   125     show "(\<Sum>\<^isub>\<infinity>n. lmeasure (A n)) = lmeasure (\<Union>i. A i)" unfolding lmeasure_def
   131     show "(\<Sum>\<^isub>\<infinity>n. measure lebesgue (A n)) = measure lebesgue (\<Union>i. A i)"
   126     proof (subst psuminf_SUP_eq)
   132     proof (simp add: lebesgue_def, subst psuminf_SUP_eq)
   127       fix n i show "Real (?m n i) \<le> Real (?m (Suc n) i)"
   133       fix n i show "Real (?m n i) \<le> Real (?m (Suc n) i)"
   128         using cube_subset[of n "Suc n"] by (auto intro!: integral_subset_le)
   134         using cube_subset[of n "Suc n"] by (auto intro!: integral_subset_le)
   129     next
   135     next
   130       show "(SUP n. \<Sum>\<^isub>\<infinity>i. Real (?m n i)) = (SUP n. Real (?M n UNIV))"
   136       show "(SUP n. \<Sum>\<^isub>\<infinity>i. Real (?m n i)) = (SUP n. Real (?M n UNIV))"
   131         unfolding psuminf_def
   137         unfolding psuminf_def
   211 lemma lebesgueI_negligible[dest]: fixes s::"'a::ordered_euclidean_space set"
   217 lemma lebesgueI_negligible[dest]: fixes s::"'a::ordered_euclidean_space set"
   212   assumes "negligible s" shows "s \<in> sets lebesgue"
   218   assumes "negligible s" shows "s \<in> sets lebesgue"
   213   using assms by (force simp: cube_def integrable_on_def negligible_def intro!: lebesgueI)
   219   using assms by (force simp: cube_def integrable_on_def negligible_def intro!: lebesgueI)
   214 
   220 
   215 lemma lmeasure_eq_0:
   221 lemma lmeasure_eq_0:
   216   fixes S :: "'a::ordered_euclidean_space set" assumes "negligible S" shows "lmeasure S = 0"
   222   fixes S :: "'a::ordered_euclidean_space set" assumes "negligible S" shows "lebesgue.\<mu> S = 0"
   217 proof -
   223 proof -
   218   have "\<And>n. integral (cube n) (indicator S :: 'a\<Rightarrow>real) = 0"
   224   have "\<And>n. integral (cube n) (indicator S :: 'a\<Rightarrow>real) = 0"
   219     unfolding integral_def using assms
   225     unfolding lebesgue_integral_def using assms
   220     by (intro some1_equality ex_ex1I has_integral_unique)
   226     by (intro integral_unique some1_equality ex_ex1I)
   221        (auto simp: cube_def negligible_def intro: )
   227        (auto simp: cube_def negligible_def)
   222   then show ?thesis unfolding lmeasure_def by auto
   228   then show ?thesis by (auto simp: lebesgue_def)
   223 qed
   229 qed
   224 
   230 
   225 lemma lmeasure_iff_LIMSEQ:
   231 lemma lmeasure_iff_LIMSEQ:
   226   assumes "A \<in> sets lebesgue" "0 \<le> m"
   232   assumes "A \<in> sets lebesgue" "0 \<le> m"
   227   shows "lmeasure A = Real m \<longleftrightarrow> (\<lambda>n. integral (cube n) (indicator A :: _ \<Rightarrow> real)) ----> m"
   233   shows "lebesgue.\<mu> A = Real m \<longleftrightarrow> (\<lambda>n. integral (cube n) (indicator A :: _ \<Rightarrow> real)) ----> m"
   228   unfolding lmeasure_def
   234 proof (simp add: lebesgue_def, intro SUP_eq_LIMSEQ)
   229 proof (intro SUP_eq_LIMSEQ)
       
   230   show "mono (\<lambda>n. integral (cube n) (indicator A::_=>real))"
   235   show "mono (\<lambda>n. integral (cube n) (indicator A::_=>real))"
   231     using cube_subset assms by (intro monoI integral_subset_le) (auto dest!: lebesgueD)
   236     using cube_subset assms by (intro monoI integral_subset_le) (auto dest!: lebesgueD)
   232   fix n show "0 \<le> integral (cube n) (indicator A::_=>real)"
   237   fix n show "0 \<le> integral (cube n) (indicator A::_=>real)"
   233     using assms by (auto dest!: lebesgueD intro!: integral_nonneg)
   238     using assms by (auto dest!: lebesgueD intro!: integral_nonneg)
   234 qed fact
   239 qed fact
   251     "(indicator (s \<inter> A) :: 'a\<Rightarrow>real) integrable_on UNIV \<longleftrightarrow> (indicator s :: 'a\<Rightarrow>real) integrable_on A"
   256     "(indicator (s \<inter> A) :: 'a\<Rightarrow>real) integrable_on UNIV \<longleftrightarrow> (indicator s :: 'a\<Rightarrow>real) integrable_on A"
   252   unfolding integral_def integrable_on_def has_integral_indicator_UNIV by auto
   257   unfolding integral_def integrable_on_def has_integral_indicator_UNIV by auto
   253 
   258 
   254 lemma lmeasure_finite_has_integral:
   259 lemma lmeasure_finite_has_integral:
   255   fixes s :: "'a::ordered_euclidean_space set"
   260   fixes s :: "'a::ordered_euclidean_space set"
   256   assumes "s \<in> sets lebesgue" "lmeasure s = Real m" "0 \<le> m"
   261   assumes "s \<in> sets lebesgue" "lebesgue.\<mu> s = Real m" "0 \<le> m"
   257   shows "(indicator s has_integral m) UNIV"
   262   shows "(indicator s has_integral m) UNIV"
   258 proof -
   263 proof -
   259   let ?I = "indicator :: 'a set \<Rightarrow> 'a \<Rightarrow> real"
   264   let ?I = "indicator :: 'a set \<Rightarrow> 'a \<Rightarrow> real"
   260   have **: "(?I s) integrable_on UNIV \<and> (\<lambda>k. integral UNIV (?I (s \<inter> cube k))) ----> integral UNIV (?I s)"
   265   have **: "(?I s) integrable_on UNIV \<and> (\<lambda>k. integral UNIV (?I (s \<inter> cube k))) ----> integral UNIV (?I s)"
   261   proof (intro monotone_convergence_increasing allI ballI)
   266   proof (intro monotone_convergence_increasing allI ballI)
   293     using assms(2) unfolding lmeasure_iff_LIMSEQ[OF assms(1,3)] integral_indicator_UNIV .
   298     using assms(2) unfolding lmeasure_iff_LIMSEQ[OF assms(1,3)] integral_indicator_UNIV .
   294   show ?thesis
   299   show ?thesis
   295     unfolding m by (intro integrable_integral **)
   300     unfolding m by (intro integrable_integral **)
   296 qed
   301 qed
   297 
   302 
   298 lemma lmeasure_finite_integrable: assumes "s \<in> sets lebesgue" "lmeasure s \<noteq> \<omega>"
   303 lemma lmeasure_finite_integrable: assumes "s \<in> sets lebesgue" "lebesgue.\<mu> s \<noteq> \<omega>"
   299   shows "(indicator s :: _ \<Rightarrow> real) integrable_on UNIV"
   304   shows "(indicator s :: _ \<Rightarrow> real) integrable_on UNIV"
   300 proof (cases "lmeasure s")
   305 proof (cases "lebesgue.\<mu> s")
   301   case (preal m) from lmeasure_finite_has_integral[OF `s \<in> sets lebesgue` this]
   306   case (preal m) from lmeasure_finite_has_integral[OF `s \<in> sets lebesgue` this]
   302   show ?thesis unfolding integrable_on_def by auto
   307   show ?thesis unfolding integrable_on_def by auto
   303 qed (insert assms, auto)
   308 qed (insert assms, auto)
   304 
   309 
   305 lemma has_integral_lebesgue: assumes "((indicator s :: _\<Rightarrow>real) has_integral m) UNIV"
   310 lemma has_integral_lebesgue: assumes "((indicator s :: _\<Rightarrow>real) has_integral m) UNIV"
   312       unfolding integrable_on_def using assms by auto
   317       unfolding integrable_on_def using assms by auto
   313   qed auto
   318   qed auto
   314 qed
   319 qed
   315 
   320 
   316 lemma has_integral_lmeasure: assumes "((indicator s :: _\<Rightarrow>real) has_integral m) UNIV"
   321 lemma has_integral_lmeasure: assumes "((indicator s :: _\<Rightarrow>real) has_integral m) UNIV"
   317   shows "lmeasure s = Real m"
   322   shows "lebesgue.\<mu> s = Real m"
   318 proof (intro lmeasure_iff_LIMSEQ[THEN iffD2])
   323 proof (intro lmeasure_iff_LIMSEQ[THEN iffD2])
   319   let ?I = "indicator :: 'a set \<Rightarrow> 'a \<Rightarrow> real"
   324   let ?I = "indicator :: 'a set \<Rightarrow> 'a \<Rightarrow> real"
   320   show "s \<in> sets lebesgue" using has_integral_lebesgue[OF assms] .
   325   show "s \<in> sets lebesgue" using has_integral_lebesgue[OF assms] .
   321   show "0 \<le> m" using assms by (rule has_integral_nonneg) auto
   326   show "0 \<le> m" using assms by (rule has_integral_nonneg) auto
   322   have "(\<lambda>n. integral UNIV (?I (s \<inter> cube n))) ----> integral UNIV (?I s)"
   327   have "(\<lambda>n. integral UNIV (?I (s \<inter> cube n))) ----> integral UNIV (?I s)"
   337   then show "(\<lambda>n. integral (cube n) (?I s)) ----> m"
   342   then show "(\<lambda>n. integral (cube n) (?I s)) ----> m"
   338     unfolding integral_unique[OF assms] integral_indicator_UNIV by simp
   343     unfolding integral_unique[OF assms] integral_indicator_UNIV by simp
   339 qed
   344 qed
   340 
   345 
   341 lemma has_integral_iff_lmeasure:
   346 lemma has_integral_iff_lmeasure:
   342   "(indicator A has_integral m) UNIV \<longleftrightarrow> (A \<in> sets lebesgue \<and> 0 \<le> m \<and> lmeasure A = Real m)"
   347   "(indicator A has_integral m) UNIV \<longleftrightarrow> (A \<in> sets lebesgue \<and> 0 \<le> m \<and> lebesgue.\<mu> A = Real m)"
   343 proof
   348 proof
   344   assume "(indicator A has_integral m) UNIV"
   349   assume "(indicator A has_integral m) UNIV"
   345   with has_integral_lmeasure[OF this] has_integral_lebesgue[OF this]
   350   with has_integral_lmeasure[OF this] has_integral_lebesgue[OF this]
   346   show "A \<in> sets lebesgue \<and> 0 \<le> m \<and> lmeasure A = Real m"
   351   show "A \<in> sets lebesgue \<and> 0 \<le> m \<and> lebesgue.\<mu> A = Real m"
   347     by (auto intro: has_integral_nonneg)
   352     by (auto intro: has_integral_nonneg)
   348 next
   353 next
   349   assume "A \<in> sets lebesgue \<and> 0 \<le> m \<and> lmeasure A = Real m"
   354   assume "A \<in> sets lebesgue \<and> 0 \<le> m \<and> lebesgue.\<mu> A = Real m"
   350   then show "(indicator A has_integral m) UNIV" by (intro lmeasure_finite_has_integral) auto
   355   then show "(indicator A has_integral m) UNIV" by (intro lmeasure_finite_has_integral) auto
   351 qed
   356 qed
   352 
   357 
   353 lemma lmeasure_eq_integral: assumes "(indicator s::_\<Rightarrow>real) integrable_on UNIV"
   358 lemma lmeasure_eq_integral: assumes "(indicator s::_\<Rightarrow>real) integrable_on UNIV"
   354   shows "lmeasure s = Real (integral UNIV (indicator s))"
   359   shows "lebesgue.\<mu> s = Real (integral UNIV (indicator s))"
   355   using assms unfolding integrable_on_def
   360   using assms unfolding integrable_on_def
   356 proof safe
   361 proof safe
   357   fix y :: real assume "(indicator s has_integral y) UNIV"
   362   fix y :: real assume "(indicator s has_integral y) UNIV"
   358   from this[unfolded has_integral_iff_lmeasure] integral_unique[OF this]
   363   from this[unfolded has_integral_iff_lmeasure] integral_unique[OF this]
   359   show "lmeasure s = Real (integral UNIV (indicator s))" by simp
   364   show "lebesgue.\<mu> s = Real (integral UNIV (indicator s))" by simp
   360 qed
   365 qed
   361 
   366 
   362 lemma lebesgue_simple_function_indicator:
   367 lemma lebesgue_simple_function_indicator:
   363   fixes f::"'a::ordered_euclidean_space \<Rightarrow> pextreal"
   368   fixes f::"'a::ordered_euclidean_space \<Rightarrow> pextreal"
   364   assumes f:"lebesgue.simple_function f"
   369   assumes f:"simple_function lebesgue f"
   365   shows "f = (\<lambda>x. (\<Sum>y \<in> f ` UNIV. y * indicator (f -` {y}) x))"
   370   shows "f = (\<lambda>x. (\<Sum>y \<in> f ` UNIV. y * indicator (f -` {y}) x))"
   366   apply(rule,subst lebesgue.simple_function_indicator_representation[OF f]) by auto
   371   by (rule, subst lebesgue.simple_function_indicator_representation[OF f]) auto
   367 
   372 
   368 lemma integral_eq_lmeasure:
   373 lemma integral_eq_lmeasure:
   369   "(indicator s::_\<Rightarrow>real) integrable_on UNIV \<Longrightarrow> integral UNIV (indicator s) = real (lmeasure s)"
   374   "(indicator s::_\<Rightarrow>real) integrable_on UNIV \<Longrightarrow> integral UNIV (indicator s) = real (lebesgue.\<mu> s)"
   370   by (subst lmeasure_eq_integral) (auto intro!: integral_nonneg)
   375   by (subst lmeasure_eq_integral) (auto intro!: integral_nonneg)
   371 
   376 
   372 lemma lmeasure_finite: assumes "(indicator s::_\<Rightarrow>real) integrable_on UNIV" shows "lmeasure s \<noteq> \<omega>"
   377 lemma lmeasure_finite: assumes "(indicator s::_\<Rightarrow>real) integrable_on UNIV" shows "lebesgue.\<mu> s \<noteq> \<omega>"
   373   using lmeasure_eq_integral[OF assms] by auto
   378   using lmeasure_eq_integral[OF assms] by auto
   374 
   379 
   375 lemma negligible_iff_lebesgue_null_sets:
   380 lemma negligible_iff_lebesgue_null_sets:
   376   "negligible A \<longleftrightarrow> A \<in> lebesgue.null_sets"
   381   "negligible A \<longleftrightarrow> A \<in> lebesgue.null_sets"
   377 proof
   382 proof
   400 lemma integral_const[simp]:
   405 lemma integral_const[simp]:
   401   fixes a b :: "'a::ordered_euclidean_space"
   406   fixes a b :: "'a::ordered_euclidean_space"
   402   shows "integral {a .. b} (\<lambda>x. c) = content {a .. b} *\<^sub>R c"
   407   shows "integral {a .. b} (\<lambda>x. c) = content {a .. b} *\<^sub>R c"
   403   by (rule integral_unique) (rule has_integral_const)
   408   by (rule integral_unique) (rule has_integral_const)
   404 
   409 
   405 lemma lmeasure_UNIV[intro]: "lmeasure (UNIV::'a::ordered_euclidean_space set) = \<omega>"
   410 lemma lmeasure_UNIV[intro]: "lebesgue.\<mu> (UNIV::'a::ordered_euclidean_space set) = \<omega>"
   406   unfolding lmeasure_def SUP_\<omega>
   411 proof (simp add: lebesgue_def SUP_\<omega>, intro allI impI)
   407 proof (intro allI impI)
       
   408   fix x assume "x < \<omega>"
   412   fix x assume "x < \<omega>"
   409   then obtain r where r: "x = Real r" "0 \<le> r" by (cases x) auto
   413   then obtain r where r: "x = Real r" "0 \<le> r" by (cases x) auto
   410   then obtain n where n: "r < of_nat n" using ex_less_of_nat by auto
   414   then obtain n where n: "r < of_nat n" using ex_less_of_nat by auto
   411   show "\<exists>i\<in>UNIV. x < Real (integral (cube i) (indicator UNIV::'a\<Rightarrow>real))"
   415   show "\<exists>i. x < Real (integral (cube i) (indicator UNIV::'a\<Rightarrow>real))"
   412   proof (intro bexI[of _ n])
   416   proof (intro exI[of _ n])
   413     have [simp]: "indicator UNIV = (\<lambda>x. 1)" by (auto simp: fun_eq_iff)
   417     have [simp]: "indicator UNIV = (\<lambda>x. 1)" by (auto simp: fun_eq_iff)
   414     { fix m :: nat assume "0 < m" then have "real n \<le> (\<Prod>x<m. 2 * real n)"
   418     { fix m :: nat assume "0 < m" then have "real n \<le> (\<Prod>x<m. 2 * real n)"
   415       proof (induct m)
   419       proof (induct m)
   416         case (Suc m)
   420         case (Suc m)
   417         show ?case
   421         show ?case
   426     then have [simp]: "0 \<le> (\<Prod>x<DIM('a). 2 * real n)" using real_of_nat_ge_zero by arith
   430     then have [simp]: "0 \<le> (\<Prod>x<DIM('a). 2 * real n)" using real_of_nat_ge_zero by arith
   427     have "x < Real (of_nat n)" using n r by auto
   431     have "x < Real (of_nat n)" using n r by auto
   428     also have "Real (of_nat n) \<le> Real (integral (cube n) (indicator UNIV::'a\<Rightarrow>real))"
   432     also have "Real (of_nat n) \<le> Real (integral (cube n) (indicator UNIV::'a\<Rightarrow>real))"
   429       by (auto simp: real_eq_of_nat[symmetric] cube_def content_closed_interval_cases)
   433       by (auto simp: real_eq_of_nat[symmetric] cube_def content_closed_interval_cases)
   430     finally show "x < Real (integral (cube n) (indicator UNIV::'a\<Rightarrow>real))" .
   434     finally show "x < Real (integral (cube n) (indicator UNIV::'a\<Rightarrow>real))" .
   431   qed auto
   435   qed
   432 qed
   436 qed
   433 
   437 
   434 lemma
   438 lemma
   435   fixes a b ::"'a::ordered_euclidean_space"
   439   fixes a b ::"'a::ordered_euclidean_space"
   436   shows lmeasure_atLeastAtMost[simp]: "lmeasure {a..b} = Real (content {a..b})"
   440   shows lmeasure_atLeastAtMost[simp]: "lebesgue.\<mu> {a..b} = Real (content {a..b})"
   437 proof -
   441 proof -
   438   have "(indicator (UNIV \<inter> {a..b})::_\<Rightarrow>real) integrable_on UNIV"
   442   have "(indicator (UNIV \<inter> {a..b})::_\<Rightarrow>real) integrable_on UNIV"
   439     unfolding integrable_indicator_UNIV by (simp add: integrable_const indicator_def_raw)
   443     unfolding integrable_indicator_UNIV by (simp add: integrable_const indicator_def_raw)
   440   from lmeasure_eq_integral[OF this] show ?thesis unfolding integral_indicator_UNIV
   444   from lmeasure_eq_integral[OF this] show ?thesis unfolding integral_indicator_UNIV
   441     by (simp add: indicator_def_raw)
   445     by (simp add: indicator_def_raw)
   451     by (subst content_closed_interval) auto
   455     by (subst content_closed_interval) auto
   452   then show ?thesis by simp
   456   then show ?thesis by simp
   453 qed
   457 qed
   454 
   458 
   455 lemma lmeasure_singleton[simp]:
   459 lemma lmeasure_singleton[simp]:
   456   fixes a :: "'a::ordered_euclidean_space" shows "lmeasure {a} = 0"
   460   fixes a :: "'a::ordered_euclidean_space" shows "lebesgue.\<mu> {a} = 0"
   457   using lmeasure_atLeastAtMost[of a a] by simp
   461   using lmeasure_atLeastAtMost[of a a] by simp
   458 
   462 
   459 declare content_real[simp]
   463 declare content_real[simp]
   460 
   464 
   461 lemma
   465 lemma
   462   fixes a b :: real
   466   fixes a b :: real
   463   shows lmeasure_real_greaterThanAtMost[simp]:
   467   shows lmeasure_real_greaterThanAtMost[simp]:
   464     "lmeasure {a <.. b} = Real (if a \<le> b then b - a else 0)"
   468     "lebesgue.\<mu> {a <.. b} = Real (if a \<le> b then b - a else 0)"
   465 proof cases
   469 proof cases
   466   assume "a < b"
   470   assume "a < b"
   467   then have "lmeasure {a <.. b} = lmeasure {a .. b} - lmeasure {a}"
   471   then have "lebesgue.\<mu> {a <.. b} = lebesgue.\<mu> {a .. b} - lebesgue.\<mu> {a}"
   468     by (subst lebesgue.measure_Diff[symmetric])
   472     by (subst lebesgue.measure_Diff[symmetric])
   469        (auto intro!: arg_cong[where f=lmeasure])
   473        (auto intro!: arg_cong[where f=lebesgue.\<mu>])
   470   then show ?thesis by auto
   474   then show ?thesis by auto
   471 qed auto
   475 qed auto
   472 
   476 
   473 lemma
   477 lemma
   474   fixes a b :: real
   478   fixes a b :: real
   475   shows lmeasure_real_atLeastLessThan[simp]:
   479   shows lmeasure_real_atLeastLessThan[simp]:
   476     "lmeasure {a ..< b} = Real (if a \<le> b then b - a else 0)"
   480     "lebesgue.\<mu> {a ..< b} = Real (if a \<le> b then b - a else 0)"
   477 proof cases
   481 proof cases
   478   assume "a < b"
   482   assume "a < b"
   479   then have "lmeasure {a ..< b} = lmeasure {a .. b} - lmeasure {b}"
   483   then have "lebesgue.\<mu> {a ..< b} = lebesgue.\<mu> {a .. b} - lebesgue.\<mu> {b}"
   480     by (subst lebesgue.measure_Diff[symmetric])
   484     by (subst lebesgue.measure_Diff[symmetric])
   481        (auto intro!: arg_cong[where f=lmeasure])
   485        (auto intro!: arg_cong[where f=lebesgue.\<mu>])
   482   then show ?thesis by auto
   486   then show ?thesis by auto
   483 qed auto
   487 qed auto
   484 
   488 
   485 lemma
   489 lemma
   486   fixes a b :: real
   490   fixes a b :: real
   487   shows lmeasure_real_greaterThanLessThan[simp]:
   491   shows lmeasure_real_greaterThanLessThan[simp]:
   488     "lmeasure {a <..< b} = Real (if a \<le> b then b - a else 0)"
   492     "lebesgue.\<mu> {a <..< b} = Real (if a \<le> b then b - a else 0)"
   489 proof cases
   493 proof cases
   490   assume "a < b"
   494   assume "a < b"
   491   then have "lmeasure {a <..< b} = lmeasure {a <.. b} - lmeasure {b}"
   495   then have "lebesgue.\<mu> {a <..< b} = lebesgue.\<mu> {a <.. b} - lebesgue.\<mu> {b}"
   492     by (subst lebesgue.measure_Diff[symmetric])
   496     by (subst lebesgue.measure_Diff[symmetric])
   493        (auto intro!: arg_cong[where f=lmeasure])
   497        (auto intro!: arg_cong[where f=lebesgue.\<mu>])
   494   then show ?thesis by auto
   498   then show ?thesis by auto
   495 qed auto
   499 qed auto
   496 
   500 
   497 interpretation borel: measure_space borel lmeasure
   501 definition "lborel = lebesgue \<lparr> sets := sets borel \<rparr>"
       
   502 
       
   503 lemma
       
   504   shows space_lborel[simp]: "space lborel = UNIV"
       
   505   and sets_lborel[simp]: "sets lborel = sets borel"
       
   506   and measure_lborel[simp]: "measure lborel = lebesgue.\<mu>"
       
   507   and measurable_lborel[simp]: "measurable lborel = measurable borel"
       
   508   by (simp_all add: measurable_def_raw lborel_def)
       
   509 
       
   510 interpretation lborel: measure_space lborel
       
   511   where "space lborel = UNIV"
       
   512   and "sets lborel = sets borel"
       
   513   and "measure lborel = lebesgue.\<mu>"
       
   514   and "measurable lborel = measurable borel"
       
   515 proof -
       
   516   show "measure_space lborel"
       
   517   proof
       
   518     show "countably_additive lborel (measure lborel)"
       
   519       using lebesgue.ca unfolding countably_additive_def lborel_def
       
   520       apply safe apply (erule_tac x=A in allE) by auto
       
   521   qed (auto simp: lborel_def)
       
   522 qed simp_all
       
   523 
       
   524 interpretation lborel: sigma_finite_measure lborel
       
   525   where "space lborel = UNIV"
       
   526   and "sets lborel = sets borel"
       
   527   and "measure lborel = lebesgue.\<mu>"
       
   528   and "measurable lborel = measurable borel"
       
   529 proof -
       
   530   show "sigma_finite_measure lborel"
       
   531   proof (default, intro conjI exI[of _ "\<lambda>n. cube n"])
       
   532     show "range cube \<subseteq> sets lborel" by (auto intro: borel_closed)
       
   533     { fix x have "\<exists>n. x\<in>cube n" using mem_big_cube by auto }
       
   534     thus "(\<Union>i. cube i) = space lborel" by auto
       
   535     show "\<forall>i. measure lborel (cube i) \<noteq> \<omega>" by (simp add: cube_def)
       
   536   qed
       
   537 qed simp_all
       
   538 
       
   539 interpretation lebesgue: sigma_finite_measure lebesgue
   498 proof
   540 proof
   499   show "countably_additive borel lmeasure"
   541   from lborel.sigma_finite guess A ..
   500     using lebesgue.ca unfolding countably_additive_def
       
   501     apply safe apply (erule_tac x=A in allE) by auto
       
   502 qed auto
       
   503 
       
   504 interpretation borel: sigma_finite_measure borel lmeasure
       
   505 proof (default, intro conjI exI[of _ "\<lambda>n. cube n"])
       
   506   show "range cube \<subseteq> sets borel" by (auto intro: borel_closed)
       
   507   { fix x have "\<exists>n. x\<in>cube n" using mem_big_cube by auto }
       
   508   thus "(\<Union>i. cube i) = space borel" by auto
       
   509   show "\<forall>i. lmeasure (cube i) \<noteq> \<omega>" unfolding cube_def by auto
       
   510 qed
       
   511 
       
   512 interpretation lebesgue: sigma_finite_measure lebesgue lmeasure
       
   513 proof
       
   514   from borel.sigma_finite guess A ..
       
   515   moreover then have "range A \<subseteq> sets lebesgue" using lebesgueI_borel by blast
   542   moreover then have "range A \<subseteq> sets lebesgue" using lebesgueI_borel by blast
   516   ultimately show "\<exists>A::nat \<Rightarrow> 'b set. range A \<subseteq> sets lebesgue \<and> (\<Union>i. A i) = space lebesgue \<and> (\<forall>i. lmeasure (A i) \<noteq> \<omega>)"
   543   ultimately show "\<exists>A::nat \<Rightarrow> 'b set. range A \<subseteq> sets lebesgue \<and> (\<Union>i. A i) = space lebesgue \<and> (\<forall>i. lebesgue.\<mu> (A i) \<noteq> \<omega>)"
   517     by auto
   544     by auto
   518 qed
   545 qed
   519 
   546 
   520 lemma simple_function_has_integral:
   547 lemma simple_function_has_integral:
   521   fixes f::"'a::ordered_euclidean_space \<Rightarrow> pextreal"
   548   fixes f::"'a::ordered_euclidean_space \<Rightarrow> pextreal"
   522   assumes f:"lebesgue.simple_function f"
   549   assumes f:"simple_function lebesgue f"
   523   and f':"\<forall>x. f x \<noteq> \<omega>"
   550   and f':"\<forall>x. f x \<noteq> \<omega>"
   524   and om:"\<forall>x\<in>range f. lmeasure (f -` {x} \<inter> UNIV) = \<omega> \<longrightarrow> x = 0"
   551   and om:"\<forall>x\<in>range f. lebesgue.\<mu> (f -` {x} \<inter> UNIV) = \<omega> \<longrightarrow> x = 0"
   525   shows "((\<lambda>x. real (f x)) has_integral (real (lebesgue.simple_integral f))) UNIV"
   552   shows "((\<lambda>x. real (f x)) has_integral (real (integral\<^isup>S lebesgue f))) UNIV"
   526   unfolding lebesgue.simple_integral_def
   553   unfolding simple_integral_def
   527   apply(subst lebesgue_simple_function_indicator[OF f])
   554   apply(subst lebesgue_simple_function_indicator[OF f])
   528 proof -
   555 proof -
   529   case goal1
   556   case goal1
   530   have *:"\<And>x. \<forall>y\<in>range f. y * indicator (f -` {y}) x \<noteq> \<omega>"
   557   have *:"\<And>x. \<forall>y\<in>range f. y * indicator (f -` {y}) x \<noteq> \<omega>"
   531     "\<forall>x\<in>range f. x * lmeasure (f -` {x} \<inter> UNIV) \<noteq> \<omega>"
   558     "\<forall>x\<in>range f. x * lebesgue.\<mu> (f -` {x} \<inter> UNIV) \<noteq> \<omega>"
   532     using f' om unfolding indicator_def by auto
   559     using f' om unfolding indicator_def by auto
   533   show ?case unfolding space_lebesgue real_of_pextreal_setsum'[OF *(1),THEN sym]
   560   show ?case unfolding space_lebesgue real_of_pextreal_setsum'[OF *(1),THEN sym]
   534     unfolding real_of_pextreal_setsum'[OF *(2),THEN sym]
   561     unfolding real_of_pextreal_setsum'[OF *(2),THEN sym]
   535     unfolding real_of_pextreal_setsum space_lebesgue
   562     unfolding real_of_pextreal_setsum space_lebesgue
   536     apply(rule has_integral_setsum)
   563     apply(rule has_integral_setsum)
   537   proof safe show "finite (range f)" using f by (auto dest: lebesgue.simple_functionD)
   564   proof safe show "finite (range f)" using f by (auto dest: lebesgue.simple_functionD)
   538     fix y::'a show "((\<lambda>x. real (f y * indicator (f -` {f y}) x)) has_integral
   565     fix y::'a show "((\<lambda>x. real (f y * indicator (f -` {f y}) x)) has_integral
   539       real (f y * lmeasure (f -` {f y} \<inter> UNIV))) UNIV"
   566       real (f y * lebesgue.\<mu> (f -` {f y} \<inter> UNIV))) UNIV"
   540     proof(cases "f y = 0") case False
   567     proof(cases "f y = 0") case False
   541       have mea:"(indicator (f -` {f y}) ::_\<Rightarrow>real) integrable_on UNIV"
   568       have mea:"(indicator (f -` {f y}) ::_\<Rightarrow>real) integrable_on UNIV"
   542         apply(rule lmeasure_finite_integrable)
   569         apply(rule lmeasure_finite_integrable)
   543         using assms unfolding lebesgue.simple_function_def using False by auto
   570         using assms unfolding simple_function_def using False by auto
   544       have *:"\<And>x. real (indicator (f -` {f y}) x::pextreal) = (indicator (f -` {f y}) x)"
   571       have *:"\<And>x. real (indicator (f -` {f y}) x::pextreal) = (indicator (f -` {f y}) x)"
   545         by (auto simp: indicator_def)
   572         by (auto simp: indicator_def)
   546       show ?thesis unfolding real_of_pextreal_mult[THEN sym]
   573       show ?thesis unfolding real_of_pextreal_mult[THEN sym]
   547         apply(rule has_integral_cmul[where 'b=real, unfolded real_scaleR_def])
   574         apply(rule has_integral_cmul[where 'b=real, unfolded real_scaleR_def])
   548         unfolding Int_UNIV_right lmeasure_eq_integral[OF mea,THEN sym]
   575         unfolding Int_UNIV_right lmeasure_eq_integral[OF mea,THEN sym]
   556   unfolding bounded_def dist_real_def apply(rule_tac x=0 in exI)
   583   unfolding bounded_def dist_real_def apply(rule_tac x=0 in exI)
   557   using assms by auto
   584   using assms by auto
   558 
   585 
   559 lemma simple_function_has_integral':
   586 lemma simple_function_has_integral':
   560   fixes f::"'a::ordered_euclidean_space \<Rightarrow> pextreal"
   587   fixes f::"'a::ordered_euclidean_space \<Rightarrow> pextreal"
   561   assumes f:"lebesgue.simple_function f"
   588   assumes f:"simple_function lebesgue f"
   562   and i: "lebesgue.simple_integral f \<noteq> \<omega>"
   589   and i: "integral\<^isup>S lebesgue f \<noteq> \<omega>"
   563   shows "((\<lambda>x. real (f x)) has_integral (real (lebesgue.simple_integral f))) UNIV"
   590   shows "((\<lambda>x. real (f x)) has_integral (real (integral\<^isup>S lebesgue f))) UNIV"
   564 proof- let ?f = "\<lambda>x. if f x = \<omega> then 0 else f x"
   591 proof- let ?f = "\<lambda>x. if f x = \<omega> then 0 else f x"
   565   { fix x have "real (f x) = real (?f x)" by (cases "f x") auto } note * = this
   592   { fix x have "real (f x) = real (?f x)" by (cases "f x") auto } note * = this
   566   have **:"{x. f x \<noteq> ?f x} = f -` {\<omega>}" by auto
   593   have **:"{x. f x \<noteq> ?f x} = f -` {\<omega>}" by auto
   567   have **:"lmeasure {x\<in>space lebesgue. f x \<noteq> ?f x} = 0"
   594   have **:"lebesgue.\<mu> {x\<in>space lebesgue. f x \<noteq> ?f x} = 0"
   568     using lebesgue.simple_integral_omega[OF assms] by(auto simp add:**)
   595     using lebesgue.simple_integral_omega[OF assms] by(auto simp add:**)
   569   show ?thesis apply(subst lebesgue.simple_integral_cong'[OF f _ **])
   596   show ?thesis apply(subst lebesgue.simple_integral_cong'[OF f _ **])
   570     apply(rule lebesgue.simple_function_compose1[OF f])
   597     apply(rule lebesgue.simple_function_compose1[OF f])
   571     unfolding * defer apply(rule simple_function_has_integral)
   598     unfolding * defer apply(rule simple_function_has_integral)
   572   proof-
   599   proof-
   573     show "lebesgue.simple_function ?f"
   600     show "simple_function lebesgue ?f"
   574       using lebesgue.simple_function_compose1[OF f] .
   601       using lebesgue.simple_function_compose1[OF f] .
   575     show "\<forall>x. ?f x \<noteq> \<omega>" by auto
   602     show "\<forall>x. ?f x \<noteq> \<omega>" by auto
   576     show "\<forall>x\<in>range ?f. lmeasure (?f -` {x} \<inter> UNIV) = \<omega> \<longrightarrow> x = 0"
   603     show "\<forall>x\<in>range ?f. lebesgue.\<mu> (?f -` {x} \<inter> UNIV) = \<omega> \<longrightarrow> x = 0"
   577     proof (safe, simp, safe, rule ccontr)
   604     proof (safe, simp, safe, rule ccontr)
   578       fix y assume "f y \<noteq> \<omega>" "f y \<noteq> 0"
   605       fix y assume "f y \<noteq> \<omega>" "f y \<noteq> 0"
   579       hence "(\<lambda>x. if f x = \<omega> then 0 else f x) -` {if f y = \<omega> then 0 else f y} = f -` {f y}"
   606       hence "(\<lambda>x. if f x = \<omega> then 0 else f x) -` {if f y = \<omega> then 0 else f y} = f -` {f y}"
   580         by (auto split: split_if_asm)
   607         by (auto split: split_if_asm)
   581       moreover assume "lmeasure ((\<lambda>x. if f x = \<omega> then 0 else f x) -` {if f y = \<omega> then 0 else f y}) = \<omega>"
   608       moreover assume "lebesgue.\<mu> ((\<lambda>x. if f x = \<omega> then 0 else f x) -` {if f y = \<omega> then 0 else f y}) = \<omega>"
   582       ultimately have "lmeasure (f -` {f y}) = \<omega>" by simp
   609       ultimately have "lebesgue.\<mu> (f -` {f y}) = \<omega>" by simp
   583       moreover
   610       moreover
   584       have "f y * lmeasure (f -` {f y}) \<noteq> \<omega>" using i f
   611       have "f y * lebesgue.\<mu> (f -` {f y}) \<noteq> \<omega>" using i f
   585         unfolding lebesgue.simple_integral_def setsum_\<omega> lebesgue.simple_function_def
   612         unfolding simple_integral_def setsum_\<omega> simple_function_def
   586         by auto
   613         by auto
   587       ultimately have "f y = 0" by (auto split: split_if_asm)
   614       ultimately have "f y = 0" by (auto split: split_if_asm)
   588       then show False using `f y \<noteq> 0` by simp
   615       then show False using `f y \<noteq> 0` by simp
   589     qed
   616     qed
   590   qed
   617   qed
   593 lemma (in measure_space) positive_integral_monotone_convergence:
   620 lemma (in measure_space) positive_integral_monotone_convergence:
   594   fixes f::"nat \<Rightarrow> 'a \<Rightarrow> pextreal"
   621   fixes f::"nat \<Rightarrow> 'a \<Rightarrow> pextreal"
   595   assumes i: "\<And>i. f i \<in> borel_measurable M" and mono: "\<And>x. mono (\<lambda>n. f n x)"
   622   assumes i: "\<And>i. f i \<in> borel_measurable M" and mono: "\<And>x. mono (\<lambda>n. f n x)"
   596   and lim: "\<And>x. (\<lambda>i. f i x) ----> u x"
   623   and lim: "\<And>x. (\<lambda>i. f i x) ----> u x"
   597   shows "u \<in> borel_measurable M"
   624   shows "u \<in> borel_measurable M"
   598   and "(\<lambda>i. positive_integral (f i)) ----> positive_integral u" (is ?ilim)
   625   and "(\<lambda>i. integral\<^isup>P M (f i)) ----> integral\<^isup>P M u" (is ?ilim)
   599 proof -
   626 proof -
   600   from positive_integral_isoton[unfolded isoton_fun_expand isoton_iff_Lim_mono, of f u]
   627   from positive_integral_isoton[unfolded isoton_fun_expand isoton_iff_Lim_mono, of f u]
   601   show ?ilim using mono lim i by auto
   628   show ?ilim using mono lim i by auto
   602   have "\<And>x. (SUP i. f i x) = u x" using mono lim SUP_Lim_pextreal
   629   have "\<And>x. (SUP i. f i x) = u x" using mono lim SUP_Lim_pextreal
   603     unfolding fun_eq_iff mono_def by auto
   630     unfolding fun_eq_iff mono_def by auto
   607 qed
   634 qed
   608 
   635 
   609 lemma positive_integral_has_integral:
   636 lemma positive_integral_has_integral:
   610   fixes f::"'a::ordered_euclidean_space => pextreal"
   637   fixes f::"'a::ordered_euclidean_space => pextreal"
   611   assumes f:"f \<in> borel_measurable lebesgue"
   638   assumes f:"f \<in> borel_measurable lebesgue"
   612   and int_om:"lebesgue.positive_integral f \<noteq> \<omega>"
   639   and int_om:"integral\<^isup>P lebesgue f \<noteq> \<omega>"
   613   and f_om:"\<forall>x. f x \<noteq> \<omega>" (* TODO: remove this *)
   640   and f_om:"\<forall>x. f x \<noteq> \<omega>" (* TODO: remove this *)
   614   shows "((\<lambda>x. real (f x)) has_integral (real (lebesgue.positive_integral f))) UNIV"
   641   shows "((\<lambda>x. real (f x)) has_integral (real (integral\<^isup>P lebesgue f))) UNIV"
   615 proof- let ?i = "lebesgue.positive_integral f"
   642 proof- let ?i = "integral\<^isup>P lebesgue f"
   616   from lebesgue.borel_measurable_implies_simple_function_sequence[OF f]
   643   from lebesgue.borel_measurable_implies_simple_function_sequence[OF f]
   617   guess u .. note conjunctD2[OF this,rule_format] note u = conjunctD2[OF this(1)] this(2)
   644   guess u .. note conjunctD2[OF this,rule_format] note u = conjunctD2[OF this(1)] this(2)
   618   let ?u = "\<lambda>i x. real (u i x)" and ?f = "\<lambda>x. real (f x)"
   645   let ?u = "\<lambda>i x. real (u i x)" and ?f = "\<lambda>x. real (f x)"
   619   have u_simple:"\<And>k. lebesgue.simple_integral (u k) = lebesgue.positive_integral (u k)"
   646   have u_simple:"\<And>k. integral\<^isup>S lebesgue (u k) = integral\<^isup>P lebesgue (u k)"
   620     apply(subst lebesgue.positive_integral_eq_simple_integral[THEN sym,OF u(1)]) ..
   647     apply(subst lebesgue.positive_integral_eq_simple_integral[THEN sym,OF u(1)]) ..
   621   have int_u_le:"\<And>k. lebesgue.simple_integral (u k) \<le> lebesgue.positive_integral f"
   648   have int_u_le:"\<And>k. integral\<^isup>S lebesgue (u k) \<le> integral\<^isup>P lebesgue f"
   622     unfolding u_simple apply(rule lebesgue.positive_integral_mono)
   649     unfolding u_simple apply(rule lebesgue.positive_integral_mono)
   623     using isoton_Sup[OF u(3)] unfolding le_fun_def by auto
   650     using isoton_Sup[OF u(3)] unfolding le_fun_def by auto
   624   have u_int_om:"\<And>i. lebesgue.simple_integral (u i) \<noteq> \<omega>"
   651   have u_int_om:"\<And>i. integral\<^isup>S lebesgue (u i) \<noteq> \<omega>"
   625   proof- case goal1 thus ?case using int_u_le[of i] int_om by auto qed
   652   proof- case goal1 thus ?case using int_u_le[of i] int_om by auto qed
   626 
   653 
   627   note u_int = simple_function_has_integral'[OF u(1) this]
   654   note u_int = simple_function_has_integral'[OF u(1) this]
   628   have "(\<lambda>x. real (f x)) integrable_on UNIV \<and>
   655   have "(\<lambda>x. real (f x)) integrable_on UNIV \<and>
   629     (\<lambda>k. Integration.integral UNIV (\<lambda>x. real (u k x))) ----> Integration.integral UNIV (\<lambda>x. real (f x))"
   656     (\<lambda>k. Integration.integral UNIV (\<lambda>x. real (u k x))) ----> Integration.integral UNIV (\<lambda>x. real (f x))"
   631   proof safe case goal1 show ?case apply(rule real_of_pextreal_mono) using u(2,3) by auto
   658   proof safe case goal1 show ?case apply(rule real_of_pextreal_mono) using u(2,3) by auto
   632   next case goal2 show ?case using u(3) apply(subst lim_Real[THEN sym])
   659   next case goal2 show ?case using u(3) apply(subst lim_Real[THEN sym])
   633       prefer 3 apply(subst Real_real') defer apply(subst Real_real')
   660       prefer 3 apply(subst Real_real') defer apply(subst Real_real')
   634       using isotone_Lim[OF u(3)[unfolded isoton_fun_expand, THEN spec]] using f_om u by auto
   661       using isotone_Lim[OF u(3)[unfolded isoton_fun_expand, THEN spec]] using f_om u by auto
   635   next case goal3
   662   next case goal3
   636     show ?case apply(rule bounded_realI[where B="real (lebesgue.positive_integral f)"])
   663     show ?case apply(rule bounded_realI[where B="real (integral\<^isup>P lebesgue f)"])
   637       apply safe apply(subst abs_of_nonneg) apply(rule integral_nonneg,rule) apply(rule u_int)
   664       apply safe apply(subst abs_of_nonneg) apply(rule integral_nonneg,rule) apply(rule u_int)
   638       unfolding integral_unique[OF u_int] defer apply(rule real_of_pextreal_mono[OF _ int_u_le])
   665       unfolding integral_unique[OF u_int] defer apply(rule real_of_pextreal_mono[OF _ int_u_le])
   639       using u int_om by auto
   666       using u int_om by auto
   640   qed note int = conjunctD2[OF this]
   667   qed note int = conjunctD2[OF this]
   641 
   668 
   642   have "(\<lambda>i. lebesgue.simple_integral (u i)) ----> ?i" unfolding u_simple
   669   have "(\<lambda>i. integral\<^isup>S lebesgue (u i)) ----> ?i" unfolding u_simple
   643     apply(rule lebesgue.positive_integral_monotone_convergence(2))
   670     apply(rule lebesgue.positive_integral_monotone_convergence(2))
   644     apply(rule lebesgue.borel_measurable_simple_function[OF u(1)])
   671     apply(rule lebesgue.borel_measurable_simple_function[OF u(1)])
   645     using isotone_Lim[OF u(3)[unfolded isoton_fun_expand, THEN spec]] by auto
   672     using isotone_Lim[OF u(3)[unfolded isoton_fun_expand, THEN spec]] by auto
   646   hence "(\<lambda>i. real (lebesgue.simple_integral (u i))) ----> real ?i" apply-
   673   hence "(\<lambda>i. real (integral\<^isup>S lebesgue (u i))) ----> real ?i" apply-
   647     apply(subst lim_Real[THEN sym]) prefer 3
   674     apply(subst lim_Real[THEN sym]) prefer 3
   648     apply(subst Real_real') defer apply(subst Real_real')
   675     apply(subst Real_real') defer apply(subst Real_real')
   649     using u f_om int_om u_int_om by auto
   676     using u f_om int_om u_int_om by auto
   650   note * = LIMSEQ_unique[OF this int(2)[unfolded integral_unique[OF u_int]]]
   677   note * = LIMSEQ_unique[OF this int(2)[unfolded integral_unique[OF u_int]]]
   651   show ?thesis unfolding * by(rule integrable_integral[OF int(1)])
   678   show ?thesis unfolding * by(rule integrable_integral[OF int(1)])
   652 qed
   679 qed
   653 
   680 
   654 lemma lebesgue_integral_has_integral:
   681 lemma lebesgue_integral_has_integral:
   655   fixes f::"'a::ordered_euclidean_space => real"
   682   fixes f::"'a::ordered_euclidean_space => real"
   656   assumes f:"lebesgue.integrable f"
   683   assumes f:"integrable lebesgue f"
   657   shows "(f has_integral (lebesgue.integral f)) UNIV"
   684   shows "(f has_integral (integral\<^isup>L lebesgue f)) UNIV"
   658 proof- let ?n = "\<lambda>x. - min (f x) 0" and ?p = "\<lambda>x. max (f x) 0"
   685 proof- let ?n = "\<lambda>x. - min (f x) 0" and ?p = "\<lambda>x. max (f x) 0"
   659   have *:"f = (\<lambda>x. ?p x - ?n x)" apply rule by auto
   686   have *:"f = (\<lambda>x. ?p x - ?n x)" apply rule by auto
   660   note f = lebesgue.integrableD[OF f]
   687   note f = integrableD[OF f]
   661   show ?thesis unfolding lebesgue.integral_def apply(subst *)
   688   show ?thesis unfolding lebesgue_integral_def apply(subst *)
   662   proof(rule has_integral_sub) case goal1
   689   proof(rule has_integral_sub) case goal1
   663     have *:"\<forall>x. Real (f x) \<noteq> \<omega>" by auto
   690     have *:"\<forall>x. Real (f x) \<noteq> \<omega>" by auto
   664     note lebesgue.borel_measurable_Real[OF f(1)]
   691     note lebesgue.borel_measurable_Real[OF f(1)]
   665     from positive_integral_has_integral[OF this f(2) *]
   692     from positive_integral_has_integral[OF this f(2) *]
   666     show ?case unfolding real_Real_max .
   693     show ?case unfolding real_Real_max .
   672     show ?case unfolding real_Real_max minus_min_eq_max by auto
   699     show ?case unfolding real_Real_max minus_min_eq_max by auto
   673   qed
   700   qed
   674 qed
   701 qed
   675 
   702 
   676 lemma lebesgue_positive_integral_eq_borel:
   703 lemma lebesgue_positive_integral_eq_borel:
   677   "f \<in> borel_measurable borel \<Longrightarrow> lebesgue.positive_integral f = borel.positive_integral f "
   704   "f \<in> borel_measurable borel \<Longrightarrow> integral\<^isup>P lebesgue f = integral\<^isup>P lborel f"
   678   by (auto intro!: lebesgue.positive_integral_subalgebra[symmetric]) default
   705   by (auto intro!: lebesgue.positive_integral_subalgebra[symmetric]) default
   679 
   706 
   680 lemma lebesgue_integral_eq_borel:
   707 lemma lebesgue_integral_eq_borel:
   681   assumes "f \<in> borel_measurable borel"
   708   assumes "f \<in> borel_measurable borel"
   682   shows "lebesgue.integrable f = borel.integrable f" (is ?P)
   709   shows "integrable lebesgue f \<longleftrightarrow> integrable lborel f" (is ?P)
   683     and "lebesgue.integral f = borel.integral f" (is ?I)
   710     and "integral\<^isup>L lebesgue f = integral\<^isup>L lborel f" (is ?I)
   684 proof -
   711 proof -
   685   have *: "sigma_algebra borel" by default
   712   have *: "sigma_algebra lborel" by default
   686   have "sets borel \<subseteq> sets lebesgue" by auto
   713   have "sets lborel \<subseteq> sets lebesgue" by auto
   687   from lebesgue.integral_subalgebra[OF assms this _ *]
   714   from lebesgue.integral_subalgebra[of f lborel, OF _ this _ _ *] assms
   688   show ?P ?I by auto
   715   show ?P ?I by auto
   689 qed
   716 qed
   690 
   717 
   691 lemma borel_integral_has_integral:
   718 lemma borel_integral_has_integral:
   692   fixes f::"'a::ordered_euclidean_space => real"
   719   fixes f::"'a::ordered_euclidean_space => real"
   693   assumes f:"borel.integrable f"
   720   assumes f:"integrable lborel f"
   694   shows "(f has_integral (borel.integral f)) UNIV"
   721   shows "(f has_integral (integral\<^isup>L lborel f)) UNIV"
   695 proof -
   722 proof -
   696   have borel: "f \<in> borel_measurable borel"
   723   have borel: "f \<in> borel_measurable borel"
   697     using f unfolding borel.integrable_def by auto
   724     using f unfolding integrable_def by auto
   698   from f show ?thesis
   725   from f show ?thesis
   699     using lebesgue_integral_has_integral[of f]
   726     using lebesgue_integral_has_integral[of f]
   700     unfolding lebesgue_integral_eq_borel[OF borel] by simp
   727     unfolding lebesgue_integral_eq_borel[OF borel] by simp
   701 qed
   728 qed
   702 
   729 
   706   shows "f \<in> borel_measurable borel"
   733   shows "f \<in> borel_measurable borel"
   707   apply(rule borel.borel_measurableI)
   734   apply(rule borel.borel_measurableI)
   708   using continuous_open_preimage[OF assms] unfolding vimage_def by auto
   735   using continuous_open_preimage[OF assms] unfolding vimage_def by auto
   709 
   736 
   710 lemma (in measure_space) integral_monotone_convergence_pos':
   737 lemma (in measure_space) integral_monotone_convergence_pos':
   711   assumes i: "\<And>i. integrable (f i)" and mono: "\<And>x. mono (\<lambda>n. f n x)"
   738   assumes i: "\<And>i. integrable M (f i)" and mono: "\<And>x. mono (\<lambda>n. f n x)"
   712   and pos: "\<And>x i. 0 \<le> f i x"
   739   and pos: "\<And>x i. 0 \<le> f i x"
   713   and lim: "\<And>x. (\<lambda>i. f i x) ----> u x"
   740   and lim: "\<And>x. (\<lambda>i. f i x) ----> u x"
   714   and ilim: "(\<lambda>i. integral (f i)) ----> x"
   741   and ilim: "(\<lambda>i. integral\<^isup>L M (f i)) ----> x"
   715   shows "integrable u \<and> integral u = x"
   742   shows "integrable M u \<and> integral\<^isup>L M u = x"
   716   using integral_monotone_convergence_pos[OF assms] by auto
   743   using integral_monotone_convergence_pos[OF assms] by auto
   717 
   744 
   718 definition e2p :: "'a::ordered_euclidean_space \<Rightarrow> (nat \<Rightarrow> real)" where
   745 definition e2p :: "'a::ordered_euclidean_space \<Rightarrow> (nat \<Rightarrow> real)" where
   719   "e2p x = (\<lambda>i\<in>{..<DIM('a)}. x$$i)"
   746   "e2p x = (\<lambda>i\<in>{..<DIM('a)}. x$$i)"
   720 
   747 
   749     apply safe apply(rule vimageI[OF _ y(1)]) unfolding y p2e_e2p by auto
   776     apply safe apply(rule vimageI[OF _ y(1)]) unfolding y p2e_e2p by auto
   750 next fix x assume "x \<in> p2e -` A \<inter> extensional {..<DIM('a)}"
   777 next fix x assume "x \<in> p2e -` A \<inter> extensional {..<DIM('a)}"
   751   thus "x \<in> e2p ` A" unfolding image_iff apply(rule_tac x="p2e x" in bexI) apply(subst e2p_p2e) by auto
   778   thus "x \<in> e2p ` A" unfolding image_iff apply(rule_tac x="p2e x" in bexI) apply(subst e2p_p2e) by auto
   752 qed
   779 qed
   753 
   780 
   754 interpretation borel_product: product_sigma_finite "\<lambda>x. borel::real algebra" "\<lambda>x. lmeasure"
   781 interpretation lborel_product: product_sigma_finite "\<lambda>x. lborel::real measure_space"
   755   by default
   782   by default
   756 
   783 
   757 lemma cube_subset_Suc[intro]: "cube n \<subseteq> cube (Suc n)"
   784 interpretation lborel_space: finite_product_sigma_finite "\<lambda>x. lborel::real measure_space" "{..<DIM('a::ordered_euclidean_space)}"
   758   unfolding cube_def_raw subset_eq apply safe unfolding mem_interval by auto
   785   where "space lborel = UNIV"
   759 
   786   and "sets lborel = sets borel"
   760 lemma Pi_iff: "f \<in> Pi I X \<longleftrightarrow> (\<forall>i\<in>I. f i \<in> X i)"
   787   and "measure lborel = lebesgue.\<mu>"
   761   unfolding Pi_def by auto
   788   and "measurable lborel = measurable borel"
   762 
   789 proof -
   763 lemma measurable_e2p_on_generator:
   790   show "finite_product_sigma_finite (\<lambda>x. lborel::real measure_space) {..<DIM('a::ordered_euclidean_space)}"
   764   "e2p \<in> measurable \<lparr> space = UNIV::'a set, sets = range lessThan \<rparr>
   791     by default simp
   765   (product_algebra
   792 qed simp_all
   766     (\<lambda>x. \<lparr> space = UNIV::real set, sets = range lessThan \<rparr>)
   793 
   767     {..<DIM('a::ordered_euclidean_space)})"
   794 lemma sets_product_borel:
   768   (is "e2p \<in> measurable ?E ?P")
   795   assumes [intro]: "finite I"
   769 proof (unfold measurable_def, intro CollectI conjI ballI)
   796   shows "sets (\<Pi>\<^isub>M i\<in>I.
   770   show "e2p \<in> space ?E \<rightarrow> space ?P" by (auto simp: e2p_def)
   797      \<lparr> space = UNIV::real set, sets = range lessThan, measure = lebesgue.\<mu> \<rparr>) =
   771   fix A assume "A \<in> sets ?P"
   798    sets (\<Pi>\<^isub>M i\<in>I. lborel)" (is "sets ?G = _")
   772   then obtain E where A: "A = (\<Pi>\<^isub>E i\<in>{..<DIM('a)}. E i)"
   799 proof -
   773     and "E \<in> {..<DIM('a)} \<rightarrow> (range lessThan)"
   800   have "sets ?G = sets (\<Pi>\<^isub>M i\<in>I.
   774     by (auto elim!: product_algebraE)
   801        sigma \<lparr> space = UNIV::real set, sets = range lessThan, measure = lebesgue.\<mu> \<rparr>)"
   775   then have "\<forall>i\<in>{..<DIM('a)}. \<exists>xs. E i = {..< xs}" by auto
   802     by (subst sigma_product_algebra_sigma_eq[of I "\<lambda>_ i. {..<real i}" ])
   776   from this[THEN bchoice] guess xs ..
   803        (auto intro!: measurable_sigma_sigma isotoneI real_arch_lt
   777   then have A_eq: "A = (\<Pi>\<^isub>E i\<in>{..<DIM('a)}. {..< xs i})"
   804              simp: product_algebra_def)
   778     using A by auto
   805   then show ?thesis
   779   have "e2p -` A = {..< (\<chi>\<chi> i. xs i) :: 'a}"
   806     unfolding lborel_def borel_eq_lessThan lebesgue_def sigma_def by simp
   780     using DIM_positive by (auto simp add: Pi_iff set_eq_iff e2p_def A_eq
       
   781       euclidean_eq[where 'a='a] eucl_less[where 'a='a])
       
   782   then show "e2p -` A \<inter> space ?E \<in> sets ?E" by simp
       
   783 qed
   807 qed
   784 
   808 
   785 lemma measurable_e2p:
   809 lemma measurable_e2p:
   786   "e2p \<in> measurable (borel::'a algebra)
   810   "e2p \<in> measurable (borel::'a::ordered_euclidean_space algebra)
   787                     (sigma (product_algebra (\<lambda>x. borel :: real algebra) {..<DIM('a::ordered_euclidean_space)}))"
   811                     (\<Pi>\<^isub>M i\<in>{..<DIM('a)}. (lborel :: real measure_space))"
   788   using measurable_e2p_on_generator[where 'a='a] unfolding borel_eq_lessThan
   812     (is "_ \<in> measurable ?E ?P")
   789   by (subst sigma_product_algebra_sigma_eq[where S="\<lambda>_ i. {..<real i}"])
   813 proof -
   790      (auto intro!: measurable_sigma_sigma isotoneI real_arch_lt
   814   let ?B = "\<lparr> space = UNIV::real set, sets = range lessThan, measure = lebesgue.\<mu> \<rparr>"
   791            simp: product_algebra_def)
   815   let ?G = "product_algebra_generator {..<DIM('a)} (\<lambda>_. ?B)"
   792 
   816   have "e2p \<in> measurable ?E (sigma ?G)"
   793 lemma measurable_p2e_on_generator:
   817   proof (rule borel.measurable_sigma)
   794   "p2e \<in> measurable
   818     show "e2p \<in> space ?E \<rightarrow> space ?G" by (auto simp: e2p_def)
   795     (product_algebra
   819     fix A assume "A \<in> sets ?G"
   796       (\<lambda>x. \<lparr> space = UNIV::real set, sets = range lessThan \<rparr>)
   820     then obtain E where A: "A = (\<Pi>\<^isub>E i\<in>{..<DIM('a)}. E i)"
   797       {..<DIM('a::ordered_euclidean_space)})
   821       and "E \<in> {..<DIM('a)} \<rightarrow> (range lessThan)"
   798     \<lparr> space = UNIV::'a set, sets = range lessThan \<rparr>"
   822       by (auto elim!: product_algebraE simp: )
   799   (is "p2e \<in> measurable ?P ?E")
   823     then have "\<forall>i\<in>{..<DIM('a)}. \<exists>xs. E i = {..< xs}" by auto
   800 proof (unfold measurable_def, intro CollectI conjI ballI)
   824     from this[THEN bchoice] guess xs ..
       
   825     then have A_eq: "A = (\<Pi>\<^isub>E i\<in>{..<DIM('a)}. {..< xs i})"
       
   826       using A by auto
       
   827     have "e2p -` A = {..< (\<chi>\<chi> i. xs i) :: 'a}"
       
   828       using DIM_positive by (auto simp add: Pi_iff set_eq_iff e2p_def A_eq
       
   829         euclidean_eq[where 'a='a] eucl_less[where 'a='a])
       
   830     then show "e2p -` A \<inter> space ?E \<in> sets ?E" by simp
       
   831   qed (auto simp: product_algebra_generator_def)
       
   832   with sets_product_borel[of "{..<DIM('a)}"] show ?thesis
       
   833     unfolding measurable_def product_algebra_def by simp
       
   834 qed
       
   835 
       
   836 lemma measurable_p2e:
       
   837   "p2e \<in> measurable (\<Pi>\<^isub>M i\<in>{..<DIM('a)}. (lborel :: real measure_space))
       
   838     (borel :: 'a::ordered_euclidean_space algebra)"
       
   839   (is "p2e \<in> measurable ?P _")
       
   840   unfolding borel_eq_lessThan
       
   841 proof (intro lborel_space.measurable_sigma)
       
   842   let ?E = "\<lparr> space = UNIV :: 'a set, sets = range lessThan \<rparr>"
   801   show "p2e \<in> space ?P \<rightarrow> space ?E" by simp
   843   show "p2e \<in> space ?P \<rightarrow> space ?E" by simp
   802   fix A assume "A \<in> sets ?E"
   844   fix A assume "A \<in> sets ?E"
   803   then obtain x where "A = {..<x}" by auto
   845   then obtain x where "A = {..<x}" by auto
   804   then have "p2e -` A \<inter> space ?P = (\<Pi>\<^isub>E i\<in>{..<DIM('a)}. {..< x $$ i})"
   846   then have "p2e -` A \<inter> space ?P = (\<Pi>\<^isub>E i\<in>{..<DIM('a)}. {..< x $$ i})"
   805     using DIM_positive
   847     using DIM_positive
   806     by (auto simp: Pi_iff set_eq_iff p2e_def
   848     by (auto simp: Pi_iff set_eq_iff p2e_def
   807                    euclidean_eq[where 'a='a] eucl_less[where 'a='a])
   849                    euclidean_eq[where 'a='a] eucl_less[where 'a='a])
   808   then show "p2e -` A \<inter> space ?P \<in> sets ?P" by auto
   850   then show "p2e -` A \<inter> space ?P \<in> sets ?P" by auto
   809 qed
   851 qed simp
   810 
       
   811 lemma measurable_p2e:
       
   812   "p2e \<in> measurable (sigma (product_algebra (\<lambda>x. borel :: real algebra) {..<DIM('a::ordered_euclidean_space)}))
       
   813                     (borel::'a algebra)"
       
   814   using measurable_p2e_on_generator[where 'a='a] unfolding borel_eq_lessThan
       
   815   by (subst sigma_product_algebra_sigma_eq[where S="\<lambda>_ i. {..<real i}"])
       
   816      (auto intro!: measurable_sigma_sigma isotoneI real_arch_lt
       
   817            simp: product_algebra_def)
       
   818 
   852 
   819 lemma e2p_Int:"e2p ` A \<inter> e2p ` B = e2p ` (A \<inter> B)" (is "?L = ?R")
   853 lemma e2p_Int:"e2p ` A \<inter> e2p ` B = e2p ` (A \<inter> B)" (is "?L = ?R")
   820   apply(rule image_Int[THEN sym])
   854   apply(rule image_Int[THEN sym])
   821   using bij_inv_p2e_e2p[THEN bij_inv_bij_betw(2)]
   855   using bij_inv_p2e_e2p[THEN bij_inv_bij_betw(2)]
   822   unfolding bij_betw_def by auto
   856   unfolding bij_betw_def by auto
   838   apply safe unfolding inter_interval by auto
   872   apply safe unfolding inter_interval by auto
   839 
   873 
   840 lemma lmeasure_measure_eq_borel_prod:
   874 lemma lmeasure_measure_eq_borel_prod:
   841   fixes A :: "('a::ordered_euclidean_space) set"
   875   fixes A :: "('a::ordered_euclidean_space) set"
   842   assumes "A \<in> sets borel"
   876   assumes "A \<in> sets borel"
   843   shows "lmeasure A = borel_product.product_measure {..<DIM('a)} (e2p ` A :: (nat \<Rightarrow> real) set)"
   877   shows "lebesgue.\<mu> A = lborel_space.\<mu> TYPE('a) (e2p ` A)" (is "_ = ?m A")
   844 proof (rule measure_unique_Int_stable[where X=A and A=cube])
   878 proof (rule measure_unique_Int_stable[where X=A and A=cube])
   845   interpret fprod: finite_product_sigma_finite "\<lambda>x. borel :: real algebra" "\<lambda>x. lmeasure" "{..<DIM('a)}" by default auto
       
   846   show "Int_stable \<lparr> space = UNIV :: 'a set, sets = range (\<lambda>(a,b). {a..b}) \<rparr>"
   879   show "Int_stable \<lparr> space = UNIV :: 'a set, sets = range (\<lambda>(a,b). {a..b}) \<rparr>"
   847     (is "Int_stable ?E" ) using Int_stable_cuboids' .
   880     (is "Int_stable ?E" ) using Int_stable_cuboids' .
   848   show "borel = sigma ?E" using borel_eq_atLeastAtMost .
   881   have [simp]: "sigma ?E = borel" using borel_eq_atLeastAtMost ..
   849   show "\<And>i. lmeasure (cube i) \<noteq> \<omega>" unfolding cube_def by auto
   882   show "\<And>i. lebesgue.\<mu> (cube i) \<noteq> \<omega>" unfolding cube_def by auto
   850   show "\<And>X. X \<in> sets ?E \<Longrightarrow>
   883   show "\<And>X. X \<in> sets ?E \<Longrightarrow> lebesgue.\<mu> X = ?m X"
   851     lmeasure X = borel_product.product_measure {..<DIM('a)} (e2p ` X :: (nat \<Rightarrow> real) set)"
       
   852   proof- case goal1 then obtain a b where X:"X = {a..b}" by auto
   884   proof- case goal1 then obtain a b where X:"X = {a..b}" by auto
   853     { presume *:"X \<noteq> {} \<Longrightarrow> ?case"
   885     { presume *:"X \<noteq> {} \<Longrightarrow> ?case"
   854       show ?case apply(cases,rule *,assumption) by auto }
   886       show ?case apply(cases,rule *,assumption) by auto }
   855     def XX \<equiv> "\<lambda>i. {a $$ i .. b $$ i}" assume  "X \<noteq> {}"  note X' = this[unfolded X interval_ne_empty]
   887     def XX \<equiv> "\<lambda>i. {a $$ i .. b $$ i}" assume  "X \<noteq> {}"  note X' = this[unfolded X interval_ne_empty]
   856     have *:"Pi\<^isub>E {..<DIM('a)} XX = e2p ` X" apply(rule set_eqI)
   888     have *:"Pi\<^isub>E {..<DIM('a)} XX = e2p ` X" apply(rule set_eqI)
   859         unfolding Pi_def extensional_def e2p_def restrict_def X mem_interval XX_def by rule auto
   891         unfolding Pi_def extensional_def e2p_def restrict_def X mem_interval XX_def by rule auto
   860     next fix x assume "x \<in> e2p ` X" then guess y unfolding image_iff .. note y = this
   892     next fix x assume "x \<in> e2p ` X" then guess y unfolding image_iff .. note y = this
   861       show "x \<in> Pi\<^isub>E {..<DIM('a)} XX" unfolding y using y(1)
   893       show "x \<in> Pi\<^isub>E {..<DIM('a)} XX" unfolding y using y(1)
   862         unfolding Pi_def extensional_def e2p_def restrict_def X mem_interval XX_def by auto
   894         unfolding Pi_def extensional_def e2p_def restrict_def X mem_interval XX_def by auto
   863     qed
   895     qed
   864     have "lmeasure X = (\<Prod>x<DIM('a). Real (b $$ x - a $$ x))"  using X' apply- unfolding X
   896     have "lebesgue.\<mu> X = (\<Prod>x<DIM('a). Real (b $$ x - a $$ x))"  using X' apply- unfolding X
   865       unfolding lmeasure_atLeastAtMost content_closed_interval apply(subst Real_setprod) by auto
   897       unfolding lmeasure_atLeastAtMost content_closed_interval apply(subst Real_setprod) by auto
   866     also have "... = (\<Prod>i<DIM('a). lmeasure (XX i))" apply(rule setprod_cong2)
   898     also have "... = (\<Prod>i<DIM('a). lebesgue.\<mu> (XX i))" apply(rule setprod_cong2)
   867       unfolding XX_def lmeasure_atLeastAtMost apply(subst content_real) using X' by auto
   899       unfolding XX_def lmeasure_atLeastAtMost apply(subst content_real) using X' by auto
   868     also have "... = borel_product.product_measure {..<DIM('a)} (e2p ` X)" unfolding *[THEN sym]
   900     also have "... = ?m X" unfolding *[THEN sym]
   869       apply(rule fprod.measure_times[THEN sym]) unfolding XX_def by auto
   901       apply(rule lborel_space.measure_times[symmetric]) unfolding XX_def by auto
   870     finally show ?case .
   902     finally show ?case .
   871   qed
   903   qed
   872 
   904 
   873   show "range cube \<subseteq> sets \<lparr>space = UNIV, sets = range (\<lambda>(a, b). {a..b})\<rparr>"
   905   show "range cube \<subseteq> sets \<lparr>space = UNIV, sets = range (\<lambda>(a, b). {a..b})\<rparr>"
   874     unfolding cube_def_raw by auto
   906     unfolding cube_def_raw by auto
   875   have "\<And>x. \<exists>xa. x \<in> cube xa" apply(rule_tac x=x in mem_big_cube) by fastsimp
   907   have "\<And>x. \<exists>xa. x \<in> cube xa" apply(rule_tac x=x in mem_big_cube) by fastsimp
   876   thus "cube \<up> space \<lparr>space = UNIV, sets = range (\<lambda>(a, b). {a..b})\<rparr>"
   908   thus "cube \<up> space \<lparr>space = UNIV, sets = range (\<lambda>(a, b). {a..b})\<rparr>"
   877     apply-apply(rule isotoneI) apply(rule cube_subset_Suc) by auto
   909     apply-apply(rule isotoneI) apply(rule cube_subset_Suc) by auto
   878   show "A \<in> sets borel " by fact
   910   show "A \<in> sets (sigma ?E)" using assms by simp
   879   show "measure_space borel lmeasure" by default
   911   have "measure_space lborel" by default
   880   show "measure_space borel
   912   then show "measure_space \<lparr> space = space ?E, sets = sets (sigma ?E), measure = measure lebesgue\<rparr>"
   881      (\<lambda>a::'a set. finite_product_sigma_finite.measure (\<lambda>x. borel) (\<lambda>x. lmeasure) {..<DIM('a)} (e2p ` a))"
   913     unfolding lebesgue_def lborel_def by simp
   882   proof (rule fprod.measure_space_vimage)
   914   let ?M = "\<lparr> space = space ?E, sets = sets (sigma ?E), measure = ?m \<rparr>"
   883     show "sigma_algebra borel" by default
   915   show "measure_space ?M"
   884     show "(p2e :: (nat \<Rightarrow> real) \<Rightarrow> 'a) \<in> measurable fprod.P borel" by (rule measurable_p2e)
   916   proof (rule lborel_space.measure_space_vimage)
   885     fix A :: "'a set" assume "A \<in> sets borel"
   917     show "sigma_algebra ?M" by (rule lborel.sigma_algebra_cong) auto
   886     show "fprod.measure (e2p ` A) = fprod.measure (p2e -` A \<inter> space fprod.P)"
   918     show "p2e \<in> measurable (\<Pi>\<^isub>M i\<in>{..<DIM('a)}. lborel) ?M"
       
   919       using measurable_p2e unfolding measurable_def by auto
       
   920     fix A :: "'a set" assume "A \<in> sets ?M"
       
   921     show "measure ?M A = lborel_space.\<mu> TYPE('a) (p2e -` A \<inter> space (\<Pi>\<^isub>M i\<in>{..<DIM('a)}. lborel))"
   887       by (simp add: e2p_image_vimage)
   922       by (simp add: e2p_image_vimage)
   888   qed
   923   qed
   889 qed
   924 qed simp
   890 
   925 
   891 lemma range_e2p:"range (e2p::'a::ordered_euclidean_space \<Rightarrow> _) = extensional {..<DIM('a)}"
   926 lemma range_e2p:"range (e2p::'a::ordered_euclidean_space \<Rightarrow> _) = extensional {..<DIM('a)}"
   892   unfolding e2p_def_raw
   927   unfolding e2p_def_raw
   893   apply auto
   928   apply auto
   894   by (rule_tac x="\<chi>\<chi> i. x i" in image_eqI) (auto simp: fun_eq_iff extensional_def)
   929   by (rule_tac x="\<chi>\<chi> i. x i" in image_eqI) (auto simp: fun_eq_iff extensional_def)
   895 
   930 
   896 lemma borel_fubini_positiv_integral:
   931 lemma borel_fubini_positiv_integral:
   897   fixes f :: "'a::ordered_euclidean_space \<Rightarrow> pextreal"
   932   fixes f :: "'a::ordered_euclidean_space \<Rightarrow> pextreal"
   898   assumes f: "f \<in> borel_measurable borel"
   933   assumes f: "f \<in> borel_measurable borel"
   899   shows "borel.positive_integral f =
   934   shows "integral\<^isup>P lborel f = \<integral>\<^isup>+x. f (p2e x) \<partial>(lborel_space.P TYPE('a))"
   900           borel_product.product_positive_integral {..<DIM('a)} (f \<circ> p2e)"
   935 proof (rule lborel.positive_integral_vimage[symmetric, of _ "e2p :: 'a \<Rightarrow> _" "(\<lambda>x. f (p2e x))", unfolded p2e_e2p])
   901 proof- def U \<equiv> "extensional {..<DIM('a)} :: (nat \<Rightarrow> real) set"
   936   show "(e2p :: 'a \<Rightarrow> _) \<in> measurable borel (lborel_space.P TYPE('a))" by (rule measurable_e2p)
   902   interpret fprod: finite_product_sigma_finite "\<lambda>x. borel" "\<lambda>x. lmeasure" "{..<DIM('a)}" by default auto
   937   show "sigma_algebra (lborel_space.P TYPE('a))" by default
   903   show ?thesis
   938   from measurable_comp[OF measurable_p2e f]
   904   proof (subst borel.positive_integral_vimage[symmetric, of _ "e2p :: 'a \<Rightarrow> _" "(\<lambda>x. f (p2e x))", unfolded p2e_e2p])
   939   show "(\<lambda>x. f (p2e x)) \<in> borel_measurable (lborel_space.P TYPE('a))" by (simp add: comp_def)
   905     show "(e2p :: 'a \<Rightarrow> _) \<in> measurable borel fprod.P" by (rule measurable_e2p)
   940   let "?L A" = "lebesgue.\<mu> ((e2p::'a \<Rightarrow> (nat \<Rightarrow> real)) -` A \<inter> UNIV)"
   906     show "sigma_algebra fprod.P" by default
   941   fix A :: "(nat \<Rightarrow> real) set" assume "A \<in> sets (lborel_space.P TYPE('a))"
   907     from measurable_comp[OF measurable_p2e f]
   942   then have A: "(e2p::'a \<Rightarrow> (nat \<Rightarrow> real)) -` A \<inter> space borel \<in> sets borel"
   908     show "(\<lambda>x. f (p2e x)) \<in> borel_measurable fprod.P" by (simp add: comp_def)
   943     by (rule measurable_sets[OF measurable_e2p])
   909     let "?L A" = "lmeasure ((e2p::'a \<Rightarrow> (nat \<Rightarrow> real)) -` A \<inter> space borel)"
   944   have [simp]: "A \<inter> extensional {..<DIM('a)} = A"
   910     show "measure_space.positive_integral fprod.P ?L (\<lambda>x. f (p2e x)) =
   945     using `A \<in> sets (lborel_space.P TYPE('a))`[THEN lborel_space.sets_into_space] by auto
   911       fprod.positive_integral (f \<circ> p2e)"
   946   show "lborel_space.\<mu> TYPE('a) A = ?L A"
   912       unfolding comp_def
   947     using lmeasure_measure_eq_borel_prod[OF A] by (simp add: range_e2p)
   913     proof (rule fprod.positive_integral_cong_measure)
       
   914       fix A :: "(nat \<Rightarrow> real) set" assume "A \<in> sets fprod.P"
       
   915       then have A: "(e2p::'a \<Rightarrow> (nat \<Rightarrow> real)) -` A \<inter> space borel \<in> sets borel"
       
   916         by (rule measurable_sets[OF measurable_e2p])
       
   917       have [simp]: "A \<inter> extensional {..<DIM('a)} = A"
       
   918         using `A \<in> sets fprod.P`[THEN fprod.sets_into_space] by auto
       
   919       show "?L A = fprod.measure A"
       
   920         unfolding lmeasure_measure_eq_borel_prod[OF A]
       
   921         by (simp add: range_e2p)
       
   922     qed
       
   923   qed
       
   924 qed
   948 qed
   925 
   949 
   926 lemma borel_fubini:
   950 lemma borel_fubini:
   927   fixes f :: "'a::ordered_euclidean_space \<Rightarrow> real"
   951   fixes f :: "'a::ordered_euclidean_space \<Rightarrow> real"
   928   assumes f: "f \<in> borel_measurable borel"
   952   assumes f: "f \<in> borel_measurable borel"
   929   shows "borel.integral f = borel_product.product_integral {..<DIM('a)} (f \<circ> p2e)"
   953   shows "integral\<^isup>L lborel f = \<integral>x. f (p2e x) \<partial>(lborel_space.P TYPE('a))"
   930 proof- interpret fprod: finite_product_sigma_finite "\<lambda>x. borel" "\<lambda>x. lmeasure" "{..<DIM('a)}" by default auto
   954 proof -
   931   have 1:"(\<lambda>x. Real (f x)) \<in> borel_measurable borel" using f by auto
   955   have 1:"(\<lambda>x. Real (f x)) \<in> borel_measurable borel" using f by auto
   932   have 2:"(\<lambda>x. Real (- f x)) \<in> borel_measurable borel" using f by auto
   956   have 2:"(\<lambda>x. Real (- f x)) \<in> borel_measurable borel" using f by auto
   933   show ?thesis unfolding fprod.integral_def borel.integral_def
   957   show ?thesis unfolding lebesgue_integral_def
   934     unfolding borel_fubini_positiv_integral[OF 1] borel_fubini_positiv_integral[OF 2]
   958     unfolding borel_fubini_positiv_integral[OF 1] borel_fubini_positiv_integral[OF 2]
   935     unfolding o_def ..
   959     unfolding o_def ..
   936 qed
   960 qed
   937 
   961 
   938 end
   962 end