src/HOL/Word/Bits_Int.thy
changeset 70183 3ea80c950023
parent 70175 85fb1a585f52
child 70190 ff9efdc84289
equal deleted inserted replaced
70182:ca9dfa7ee3bd 70183:3ea80c950023
   773 
   773 
   774 instance ..
   774 instance ..
   775 
   775 
   776 end
   776 end
   777 
   777 
       
   778 
       
   779 subsection \<open>More lemmas\<close>
       
   780 
       
   781 lemma twice_conv_BIT: "2 * x = x BIT False"
       
   782   by (rule bin_rl_eqI) (simp_all, simp_all add: bin_rest_def bin_last_def)
       
   783 
       
   784 lemma not_int_cmp_0 [simp]:
       
   785   fixes i :: int shows
       
   786   "0 < NOT i \<longleftrightarrow> i < -1"
       
   787   "0 \<le> NOT i \<longleftrightarrow> i < 0"
       
   788   "NOT i < 0 \<longleftrightarrow> i \<ge> 0"
       
   789   "NOT i \<le> 0 \<longleftrightarrow> i \<ge> -1"
       
   790 by(simp_all add: int_not_def) arith+
       
   791 
       
   792 lemma bbw_ao_dist2: "(x :: int) AND (y OR z) = x AND y OR x AND z"
       
   793 by(metis int_and_comm bbw_ao_dist)
       
   794 
       
   795 lemmas int_and_ac = bbw_lcs(1) int_and_comm int_and_assoc
       
   796 
       
   797 lemma int_nand_same [simp]: fixes x :: int shows "x AND NOT x = 0"
       
   798 by(induct x y\<equiv>"NOT x" rule: bitAND_int.induct)(subst bitAND_int.simps, clarsimp)
       
   799 
       
   800 lemma int_nand_same_middle: fixes x :: int shows "x AND y AND NOT x = 0"
       
   801 by (metis bbw_lcs(1) int_and_0 int_nand_same)
       
   802 
       
   803 lemma and_xor_dist: fixes x :: int shows
       
   804   "x AND (y XOR z) = (x AND y) XOR (x AND z)"
       
   805 by(simp add: int_xor_def bbw_ao_dist2 bbw_ao_dist bbw_not_dist int_and_ac int_nand_same_middle)
       
   806 
       
   807 lemma BIT_lt0 [simp]: "x BIT b < 0 \<longleftrightarrow> x < 0"
       
   808 by(cases b)(auto simp add: Bit_def)
       
   809 
       
   810 lemma BIT_ge0 [simp]: "x BIT b \<ge> 0 \<longleftrightarrow> x \<ge> 0"
       
   811 by(cases b)(auto simp add: Bit_def)
       
   812 
       
   813 lemma [simp]: 
       
   814   shows bin_rest_lt0: "bin_rest i < 0 \<longleftrightarrow> i < 0"
       
   815   and  bin_rest_ge_0: "bin_rest i \<ge> 0 \<longleftrightarrow> i \<ge> 0"
       
   816 by(auto simp add: bin_rest_def)
       
   817 
       
   818 lemma bin_rest_gt_0 [simp]: "bin_rest x > 0 \<longleftrightarrow> x > 1"
       
   819 by(simp add: bin_rest_def add1_zle_eq pos_imp_zdiv_pos_iff) (metis add1_zle_eq one_add_one)
       
   820 
       
   821 lemma int_and_lt0 [simp]: fixes x y :: int shows
       
   822   "x AND y < 0 \<longleftrightarrow> x < 0 \<and> y < 0"
       
   823 by(induct x y rule: bitAND_int.induct)(subst bitAND_int.simps, simp)
       
   824 
       
   825 lemma int_and_ge0 [simp]: fixes x y :: int shows 
       
   826   "x AND y \<ge> 0 \<longleftrightarrow> x \<ge> 0 \<or> y \<ge> 0"
       
   827 by (metis int_and_lt0 linorder_not_less)
       
   828 
       
   829 lemma int_and_1: fixes x :: int shows "x AND 1 = x mod 2"
       
   830 by(subst bitAND_int.simps)(simp add: Bit_def bin_last_def zmod_minus1)
       
   831 
       
   832 lemma int_1_and: fixes x :: int shows "1 AND x = x mod 2"
       
   833 by(subst int_and_comm)(simp add: int_and_1)
       
   834 
       
   835 lemma int_or_lt0 [simp]: fixes x y :: int shows 
       
   836   "x OR y < 0 \<longleftrightarrow> x < 0 \<or> y < 0"
       
   837 by(simp add: int_or_def)
       
   838 
       
   839 lemma int_xor_lt0 [simp]: fixes x y :: int shows
       
   840   "x XOR y < 0 \<longleftrightarrow> ((x < 0) \<noteq> (y < 0))"
       
   841 by(auto simp add: int_xor_def)
       
   842 
       
   843 lemma int_xor_ge0 [simp]: fixes x y :: int shows
       
   844   "x XOR y \<ge> 0 \<longleftrightarrow> ((x \<ge> 0) \<longleftrightarrow> (y \<ge> 0))"
       
   845 by (metis int_xor_lt0 linorder_not_le)
       
   846 
       
   847 lemma bin_last_conv_AND:
       
   848   "bin_last i \<longleftrightarrow> i AND 1 \<noteq> 0"
       
   849 proof -
       
   850   obtain x b where "i = x BIT b" by(cases i rule: bin_exhaust)
       
   851   hence "i AND 1 = 0 BIT b"
       
   852     by(simp add: BIT_special_simps(2)[symmetric] del: BIT_special_simps(2))
       
   853   thus ?thesis using \<open>i = x BIT b\<close> by(cases b) simp_all
       
   854 qed
       
   855 
       
   856 lemma bitval_bin_last:
       
   857   "of_bool (bin_last i) = i AND 1"
       
   858 proof -
       
   859   obtain x b where "i = x BIT b" by(cases i rule: bin_exhaust)
       
   860   hence "i AND 1 = 0 BIT b"
       
   861     by(simp add: BIT_special_simps(2)[symmetric] del: BIT_special_simps(2))
       
   862   thus ?thesis by(cases b)(simp_all add: bin_last_conv_AND)
       
   863 qed
       
   864 
       
   865 lemma bl_to_bin_BIT:
       
   866   "bl_to_bin bs BIT b = bl_to_bin (bs @ [b])"
       
   867 by(simp add: bl_to_bin_append)
       
   868 
       
   869 lemma bin_last_bl_to_bin: "bin_last (bl_to_bin bs) \<longleftrightarrow> bs \<noteq> [] \<and> last bs"
       
   870 by(cases "bs = []")(auto simp add: bl_to_bin_def last_bin_last'[where w=0])
       
   871 
       
   872 lemma bin_rest_bl_to_bin: "bin_rest (bl_to_bin bs) = bl_to_bin (butlast bs)"
       
   873 by(cases "bs = []")(simp_all add: bl_to_bin_def butlast_rest_bl2bin_aux)
       
   874 
       
   875 lemma bin_nth_numeral_unfold:
       
   876   "bin_nth (numeral (num.Bit0 x)) n \<longleftrightarrow> n > 0 \<and> bin_nth (numeral x) (n - 1)"
       
   877   "bin_nth (numeral (num.Bit1 x)) n \<longleftrightarrow> (n > 0 \<longrightarrow> bin_nth (numeral x) (n - 1))"
       
   878 by(case_tac [!] n) simp_all
       
   879 
       
   880 lemma bin_sign_and:
       
   881   "bin_sign (i AND j) = - (bin_sign i * bin_sign j)"
       
   882 by(simp add: bin_sign_def)
       
   883 
       
   884 lemma minus_BIT_0: fixes x y :: int shows "x BIT b - y BIT False = (x - y) BIT b"
       
   885 by(simp add: Bit_def)
       
   886 
       
   887 lemma int_not_neg_numeral: "NOT (- numeral n) = (Num.sub n num.One :: int)"
       
   888 by(simp add: int_not_def)
       
   889 
       
   890 lemma sub_inc_One: "Num.sub (Num.inc n) num.One = numeral n"
       
   891 by (metis add_diff_cancel diff_minus_eq_add diff_numeral_special(2) diff_numeral_special(6))
       
   892 
       
   893 lemma inc_BitM: "Num.inc (Num.BitM n) = num.Bit0 n"
       
   894 by(simp add: BitM_plus_one[symmetric] add_One)
       
   895 
       
   896 lemma int_neg_numeral_pOne_conv_not: "- numeral (n + num.One) = (NOT (numeral n) :: int)"
       
   897 by(simp add: int_not_def)
       
   898 
       
   899 lemma int_lsb_BIT [simp]: fixes x :: int shows
       
   900   "lsb (x BIT b) \<longleftrightarrow> b"
       
   901 by(simp add: lsb_int_def)
       
   902 
       
   903 lemma bin_last_conv_lsb: "bin_last = lsb"
       
   904 by(clarsimp simp add: lsb_int_def fun_eq_iff)
       
   905 
       
   906 lemma int_lsb_numeral [simp]:
       
   907   "lsb (0 :: int) = False"
       
   908   "lsb (1 :: int) = True"
       
   909   "lsb (Numeral1 :: int) = True"
       
   910   "lsb (- 1 :: int) = True"
       
   911   "lsb (- Numeral1 :: int) = True"
       
   912   "lsb (numeral (num.Bit0 w) :: int) = False"
       
   913   "lsb (numeral (num.Bit1 w) :: int) = True"
       
   914   "lsb (- numeral (num.Bit0 w) :: int) = False"
       
   915   "lsb (- numeral (num.Bit1 w) :: int) = True"
       
   916 by(simp_all add: lsb_int_def)
       
   917 
       
   918 lemma int_set_bit_0 [simp]: fixes x :: int shows
       
   919   "set_bit x 0 b = bin_rest x BIT b"
       
   920 by(auto simp add: set_bit_int_def intro: bin_rl_eqI)
       
   921 
       
   922 lemma int_set_bit_Suc: fixes x :: int shows
       
   923   "set_bit x (Suc n) b = set_bit (bin_rest x) n b BIT bin_last x"
       
   924 by(auto simp add: set_bit_int_def twice_conv_BIT intro: bin_rl_eqI)
       
   925 
       
   926 lemma bin_last_set_bit:
       
   927   "bin_last (set_bit x n b) = (if n > 0 then bin_last x else b)"
       
   928 by(cases n)(simp_all add: int_set_bit_Suc)
       
   929 
       
   930 lemma bin_rest_set_bit: 
       
   931   "bin_rest (set_bit x n b) = (if n > 0 then set_bit (bin_rest x) (n - 1) b else bin_rest x)"
       
   932 by(cases n)(simp_all add: int_set_bit_Suc)
       
   933 
       
   934 lemma int_set_bit_numeral: fixes x :: int shows
       
   935   "set_bit x (numeral w) b = set_bit (bin_rest x) (pred_numeral w) b BIT bin_last x"
       
   936 by(simp add: set_bit_int_def)
       
   937 
       
   938 lemmas int_set_bit_numerals [simp] =
       
   939   int_set_bit_numeral[where x="numeral w'"] 
       
   940   int_set_bit_numeral[where x="- numeral w'"]
       
   941   int_set_bit_numeral[where x="Numeral1"]
       
   942   int_set_bit_numeral[where x="1"]
       
   943   int_set_bit_numeral[where x="0"]
       
   944   int_set_bit_Suc[where x="numeral w'"]
       
   945   int_set_bit_Suc[where x="- numeral w'"]
       
   946   int_set_bit_Suc[where x="Numeral1"]
       
   947   int_set_bit_Suc[where x="1"]
       
   948   int_set_bit_Suc[where x="0"]
       
   949   for w'
       
   950 
       
   951 lemma int_shiftl_BIT: fixes x :: int
       
   952   shows int_shiftl0 [simp]: "x << 0 = x"
       
   953   and int_shiftl_Suc [simp]: "x << Suc n = (x << n) BIT False"
       
   954 by(auto simp add: shiftl_int_def Bit_def)
       
   955 
       
   956 lemma int_0_shiftl [simp]: "0 << n = (0 :: int)"
       
   957 by(induct n) simp_all
       
   958 
       
   959 lemma bin_last_shiftl: "bin_last (x << n) \<longleftrightarrow> n = 0 \<and> bin_last x"
       
   960 by(cases n)(simp_all)
       
   961 
       
   962 lemma bin_rest_shiftl: "bin_rest (x << n) = (if n > 0 then x << (n - 1) else bin_rest x)"
       
   963 by(cases n)(simp_all)
       
   964 
       
   965 lemma bin_nth_shiftl [simp]: "bin_nth (x << n) m \<longleftrightarrow> n \<le> m \<and> bin_nth x (m - n)"
       
   966 proof(induct n arbitrary: x m)
       
   967   case (Suc n)
       
   968   thus ?case by(cases m) simp_all
       
   969 qed simp
       
   970 
       
   971 lemma int_shiftr_BIT [simp]: fixes x :: int
       
   972   shows int_shiftr0: "x >> 0 = x"
       
   973   and int_shiftr_Suc: "x BIT b >> Suc n = x >> n"
       
   974 proof -
       
   975   show "x >> 0 = x" by (simp add: shiftr_int_def)
       
   976   show "x BIT b >> Suc n = x >> n" by (cases b)
       
   977    (simp_all add: shiftr_int_def Bit_def add.commute pos_zdiv_mult_2)
       
   978 qed
       
   979 
       
   980 lemma bin_last_shiftr: "bin_last (x >> n) \<longleftrightarrow> x !! n"
       
   981 proof(induct n arbitrary: x)
       
   982   case 0 thus ?case by simp
       
   983 next
       
   984   case (Suc n)
       
   985   thus ?case by(cases x rule: bin_exhaust) simp
       
   986 qed
       
   987 
       
   988 lemma bin_rest_shiftr [simp]: "bin_rest (x >> n) = x >> Suc n"
       
   989 proof(induct n arbitrary: x)
       
   990   case 0
       
   991   thus ?case by(cases x rule: bin_exhaust) auto
       
   992 next
       
   993   case (Suc n)
       
   994   thus ?case by(cases x rule: bin_exhaust) auto
       
   995 qed
       
   996 
       
   997 lemma bin_nth_shiftr [simp]: "bin_nth (x >> n) m = bin_nth x (n + m)"
       
   998 proof(induct n arbitrary: x m)
       
   999   case (Suc n)
       
  1000   thus ?case by(cases x rule: bin_exhaust) simp_all
       
  1001 qed simp
       
  1002 
       
  1003 lemma bin_nth_conv_AND:
       
  1004   fixes x :: int shows 
       
  1005   "bin_nth x n \<longleftrightarrow> x AND (1 << n) \<noteq> 0"
       
  1006 proof(induct n arbitrary: x)
       
  1007   case 0 
       
  1008   thus ?case by(simp add: int_and_1 bin_last_def)
       
  1009 next
       
  1010   case (Suc n)
       
  1011   thus ?case by(cases x rule: bin_exhaust)(simp_all add: bin_nth_ops Bit_eq_0_iff)
       
  1012 qed
       
  1013 
       
  1014 lemma int_shiftl_numeral [simp]: 
       
  1015   "(numeral w :: int) << numeral w' = numeral (num.Bit0 w) << pred_numeral w'"
       
  1016   "(- numeral w :: int) << numeral w' = - numeral (num.Bit0 w) << pred_numeral w'"
       
  1017 by(simp_all add: numeral_eq_Suc Bit_def shiftl_int_def)
       
  1018   (metis add_One mult_inc semiring_norm(11) semiring_norm(13) semiring_norm(2) semiring_norm(6) semiring_norm(87))+
       
  1019 
       
  1020 lemma int_shiftl_One_numeral [simp]: "(1 :: int) << numeral w = 2 << pred_numeral w"
       
  1021 by(metis int_shiftl_numeral numeral_One)
       
  1022 
       
  1023 lemma shiftl_ge_0 [simp]: fixes i :: int shows "i << n \<ge> 0 \<longleftrightarrow> i \<ge> 0"
       
  1024 by(induct n) simp_all
       
  1025 
       
  1026 lemma shiftl_lt_0 [simp]: fixes i :: int shows "i << n < 0 \<longleftrightarrow> i < 0"
       
  1027 by (metis not_le shiftl_ge_0)
       
  1028 
       
  1029 lemma int_shiftl_test_bit: "(n << i :: int) !! m \<longleftrightarrow> m \<ge> i \<and> n !! (m - i)"
       
  1030 proof(induction i)
       
  1031   case (Suc n)
       
  1032   thus ?case by(cases m) simp_all
       
  1033 qed simp
       
  1034 
       
  1035 lemma int_0shiftr [simp]: "(0 :: int) >> x = 0"
       
  1036 by(simp add: shiftr_int_def)
       
  1037 
       
  1038 lemma int_minus1_shiftr [simp]: "(-1 :: int) >> x = -1"
       
  1039 by(simp add: shiftr_int_def div_eq_minus1)
       
  1040 
       
  1041 lemma int_shiftr_ge_0 [simp]: fixes i :: int shows "i >> n \<ge> 0 \<longleftrightarrow> i \<ge> 0"
       
  1042 proof(induct n arbitrary: i)
       
  1043   case (Suc n)
       
  1044   thus ?case by(cases i rule: bin_exhaust) simp_all
       
  1045 qed simp
       
  1046 
       
  1047 lemma int_shiftr_lt_0 [simp]: fixes i :: int shows "i >> n < 0 \<longleftrightarrow> i < 0"
       
  1048 by (metis int_shiftr_ge_0 not_less)
       
  1049 
       
  1050 lemma uminus_Bit_eq:
       
  1051   "- k BIT b = (- k - of_bool b) BIT b"
       
  1052   by (cases b) (simp_all add: Bit_def)
       
  1053 
       
  1054 lemma int_shiftr_numeral [simp]:
       
  1055   "(1 :: int) >> numeral w' = 0"
       
  1056   "(numeral num.One :: int) >> numeral w' = 0"
       
  1057   "(numeral (num.Bit0 w) :: int) >> numeral w' = numeral w >> pred_numeral w'"
       
  1058   "(numeral (num.Bit1 w) :: int) >> numeral w' = numeral w >> pred_numeral w'"
       
  1059   "(- numeral (num.Bit0 w) :: int) >> numeral w' = - numeral w >> pred_numeral w'"
       
  1060   "(- numeral (num.Bit1 w) :: int) >> numeral w' = - numeral (Num.inc w) >> pred_numeral w'"
       
  1061   by (simp_all only: numeral_One expand_BIT numeral_eq_Suc int_shiftr_Suc BIT_special_simps(2)[symmetric] int_0shiftr add_One uminus_Bit_eq)
       
  1062     (simp_all add: add_One)
       
  1063 
       
  1064 lemma int_shiftr_numeral_Suc0 [simp]:
       
  1065   "(1 :: int) >> Suc 0 = 0"
       
  1066   "(numeral num.One :: int) >> Suc 0 = 0"
       
  1067   "(numeral (num.Bit0 w) :: int) >> Suc 0 = numeral w"
       
  1068   "(numeral (num.Bit1 w) :: int) >> Suc 0 = numeral w"
       
  1069   "(- numeral (num.Bit0 w) :: int) >> Suc 0 = - numeral w"
       
  1070   "(- numeral (num.Bit1 w) :: int) >> Suc 0 = - numeral (Num.inc w)"
       
  1071 by(simp_all only: One_nat_def[symmetric] numeral_One[symmetric] int_shiftr_numeral pred_numeral_simps int_shiftr0)
       
  1072 
       
  1073 lemma bin_nth_minus_p2:
       
  1074   assumes sign: "bin_sign x = 0"
       
  1075   and y: "y = 1 << n"
       
  1076   and m: "m < n"
       
  1077   and x: "x < y"
       
  1078   shows "bin_nth (x - y) m = bin_nth x m"
       
  1079 using sign m x unfolding y
       
  1080 proof(induction m arbitrary: x y n)
       
  1081   case 0
       
  1082   thus ?case
       
  1083     by(simp add: bin_last_def shiftl_int_def) (metis (hide_lams, no_types) mod_diff_right_eq mod_self neq0_conv numeral_One power_eq_0_iff power_mod diff_zero zero_neq_numeral)
       
  1084 next
       
  1085   case (Suc m)
       
  1086   from \<open>Suc m < n\<close> obtain n' where [simp]: "n = Suc n'" by(cases n) auto
       
  1087   obtain x' b where [simp]: "x = x' BIT b" by(cases x rule: bin_exhaust)
       
  1088   from \<open>bin_sign x = 0\<close> have "bin_sign x' = 0" by simp
       
  1089   moreover from \<open>x < 1 << n\<close> have "x' < 1 << n'"
       
  1090     by(cases b)(simp_all add: Bit_def shiftl_int_def)
       
  1091   moreover have "(2 * x' + of_bool b - 2 * 2 ^ n') div 2 = x' + (- (2 ^ n') + of_bool b div 2)"
       
  1092     by(simp only: add_diff_eq[symmetric] add.commute div_mult_self2[OF zero_neq_numeral[symmetric]])
       
  1093   ultimately show ?case using Suc.IH[of x' n'] Suc.prems
       
  1094     by(cases b)(simp_all add: Bit_def bin_rest_def shiftl_int_def)
       
  1095 qed
       
  1096 
       
  1097 lemma bin_clr_conv_NAND:
       
  1098   "bin_sc n False i = i AND NOT (1 << n)"
       
  1099 by(induct n arbitrary: i)(auto intro: bin_rl_eqI)
       
  1100 
       
  1101 lemma bin_set_conv_OR:
       
  1102   "bin_sc n True i = i OR (1 << n)"
       
  1103 by(induct n arbitrary: i)(auto intro: bin_rl_eqI)
       
  1104 
       
  1105 lemma int_set_bits_K_True [simp]: "(BITS _. True) = (-1 :: int)"
       
  1106 by(auto simp add: set_bits_int_def bin_last_bl_to_bin)
       
  1107 
       
  1108 lemma int_set_bits_K_False [simp]: "(BITS _. False) = (0 :: int)"
       
  1109 by(auto simp add: set_bits_int_def)
       
  1110 
       
  1111 lemma msb_conv_bin_sign: "msb x \<longleftrightarrow> bin_sign x = -1"
       
  1112 by(simp add: bin_sign_def not_le msb_int_def)
       
  1113 
       
  1114 lemma msb_BIT [simp]: "msb (x BIT b) = msb x"
       
  1115 by(simp add: msb_int_def)
       
  1116 
       
  1117 lemma msb_bin_rest [simp]: "msb (bin_rest x) = msb x"
       
  1118 by(simp add: msb_int_def)
       
  1119 
       
  1120 lemma int_msb_and [simp]: "msb ((x :: int) AND y) \<longleftrightarrow> msb x \<and> msb y"
       
  1121 by(simp add: msb_int_def)
       
  1122 
       
  1123 lemma int_msb_or [simp]: "msb ((x :: int) OR y) \<longleftrightarrow> msb x \<or> msb y"
       
  1124 by(simp add: msb_int_def)
       
  1125 
       
  1126 lemma int_msb_xor [simp]: "msb ((x :: int) XOR y) \<longleftrightarrow> msb x \<noteq> msb y"
       
  1127 by(simp add: msb_int_def)
       
  1128 
       
  1129 lemma int_msb_not [simp]: "msb (NOT (x :: int)) \<longleftrightarrow> \<not> msb x"
       
  1130 by(simp add: msb_int_def not_less)
       
  1131 
       
  1132 lemma msb_shiftl [simp]: "msb ((x :: int) << n) \<longleftrightarrow> msb x"
       
  1133 by(simp add: msb_int_def)
       
  1134 
       
  1135 lemma msb_shiftr [simp]: "msb ((x :: int) >> r) \<longleftrightarrow> msb x"
       
  1136 by(simp add: msb_int_def)
       
  1137 
       
  1138 lemma msb_bin_sc [simp]: "msb (bin_sc n b x) \<longleftrightarrow> msb x"
       
  1139 by(simp add: msb_conv_bin_sign)
       
  1140 
       
  1141 lemma msb_set_bit [simp]: "msb (set_bit (x :: int) n b) \<longleftrightarrow> msb x"
       
  1142 by(simp add: msb_conv_bin_sign set_bit_int_def)
       
  1143 
       
  1144 lemma msb_0 [simp]: "msb (0 :: int) = False"
       
  1145 by(simp add: msb_int_def)
       
  1146 
       
  1147 lemma msb_1 [simp]: "msb (1 :: int) = False"
       
  1148 by(simp add: msb_int_def)
       
  1149 
       
  1150 lemma msb_numeral [simp]:
       
  1151   "msb (numeral n :: int) = False"
       
  1152   "msb (- numeral n :: int) = True"
       
  1153 by(simp_all add: msb_int_def)
       
  1154 
   778 end
  1155 end