src/HOL/Library/Code_Numeral_Types.thy
changeset 51154 3f0896692565
parent 51153 b14ee572cc7b
parent 51151 65b7ccb1d96a
child 51155 f18862753271
child 51156 cbb640c3d203
equal deleted inserted replaced
51153:b14ee572cc7b 51154:3f0896692565
     1 (*  Title:      HOL/Library/Code_Numeral_Types.thy
       
     2     Author:     Florian Haftmann, TU Muenchen
       
     3 *)
       
     4 
       
     5 header {* Numeric types for code generation onto target language numerals only *}
       
     6 
       
     7 theory Code_Numeral_Types
       
     8 imports Main Nat_Transfer Divides Lifting
       
     9 begin
       
    10 
       
    11 subsection {* Type of target language integers *}
       
    12 
       
    13 typedef integer = "UNIV \<Colon> int set"
       
    14   morphisms int_of_integer integer_of_int ..
       
    15 
       
    16 setup_lifting (no_code) type_definition_integer
       
    17 
       
    18 lemma integer_eq_iff:
       
    19   "k = l \<longleftrightarrow> int_of_integer k = int_of_integer l"
       
    20   by transfer rule
       
    21 
       
    22 lemma integer_eqI:
       
    23   "int_of_integer k = int_of_integer l \<Longrightarrow> k = l"
       
    24   using integer_eq_iff [of k l] by simp
       
    25 
       
    26 lemma int_of_integer_integer_of_int [simp]:
       
    27   "int_of_integer (integer_of_int k) = k"
       
    28   by transfer rule
       
    29 
       
    30 lemma integer_of_int_int_of_integer [simp]:
       
    31   "integer_of_int (int_of_integer k) = k"
       
    32   by transfer rule
       
    33 
       
    34 instantiation integer :: ring_1
       
    35 begin
       
    36 
       
    37 lift_definition zero_integer :: integer
       
    38   is "0 :: int"
       
    39   .
       
    40 
       
    41 declare zero_integer.rep_eq [simp]
       
    42 
       
    43 lift_definition one_integer :: integer
       
    44   is "1 :: int"
       
    45   .
       
    46 
       
    47 declare one_integer.rep_eq [simp]
       
    48 
       
    49 lift_definition plus_integer :: "integer \<Rightarrow> integer \<Rightarrow> integer"
       
    50   is "plus :: int \<Rightarrow> int \<Rightarrow> int"
       
    51   .
       
    52 
       
    53 declare plus_integer.rep_eq [simp]
       
    54 
       
    55 lift_definition uminus_integer :: "integer \<Rightarrow> integer"
       
    56   is "uminus :: int \<Rightarrow> int"
       
    57   .
       
    58 
       
    59 declare uminus_integer.rep_eq [simp]
       
    60 
       
    61 lift_definition minus_integer :: "integer \<Rightarrow> integer \<Rightarrow> integer"
       
    62   is "minus :: int \<Rightarrow> int \<Rightarrow> int"
       
    63   .
       
    64 
       
    65 declare minus_integer.rep_eq [simp]
       
    66 
       
    67 lift_definition times_integer :: "integer \<Rightarrow> integer \<Rightarrow> integer"
       
    68   is "times :: int \<Rightarrow> int \<Rightarrow> int"
       
    69   .
       
    70 
       
    71 declare times_integer.rep_eq [simp]
       
    72 
       
    73 instance proof
       
    74 qed (transfer, simp add: algebra_simps)+
       
    75 
       
    76 end
       
    77 
       
    78 lemma [transfer_rule]:
       
    79   "fun_rel HOL.eq cr_integer (of_nat :: nat \<Rightarrow> int) (of_nat :: nat \<Rightarrow> integer)"
       
    80   by (unfold of_nat_def [abs_def])  transfer_prover
       
    81 
       
    82 lemma [transfer_rule]:
       
    83   "fun_rel HOL.eq cr_integer (\<lambda>k :: int. k :: int) (of_int :: int \<Rightarrow> integer)"
       
    84 proof -
       
    85   have "fun_rel HOL.eq cr_integer (of_int :: int \<Rightarrow> int) (of_int :: int \<Rightarrow> integer)"
       
    86     by (unfold of_int_of_nat [abs_def]) transfer_prover
       
    87   then show ?thesis by (simp add: id_def)
       
    88 qed
       
    89 
       
    90 lemma [transfer_rule]:
       
    91   "fun_rel HOL.eq cr_integer (numeral :: num \<Rightarrow> int) (numeral :: num \<Rightarrow> integer)"
       
    92 proof -
       
    93   have "fun_rel HOL.eq cr_integer (numeral :: num \<Rightarrow> int) (\<lambda>n. of_int (numeral n))"
       
    94     by transfer_prover
       
    95   then show ?thesis by simp
       
    96 qed
       
    97 
       
    98 lemma [transfer_rule]:
       
    99   "fun_rel HOL.eq cr_integer (neg_numeral :: num \<Rightarrow> int) (neg_numeral :: num \<Rightarrow> integer)"
       
   100   by (unfold neg_numeral_def [abs_def]) transfer_prover
       
   101 
       
   102 lemma [transfer_rule]:
       
   103   "fun_rel HOL.eq (fun_rel HOL.eq cr_integer) (Num.sub :: _ \<Rightarrow> _ \<Rightarrow> int) (Num.sub :: _ \<Rightarrow> _ \<Rightarrow> integer)"
       
   104   by (unfold Num.sub_def [abs_def]) transfer_prover
       
   105 
       
   106 lemma int_of_integer_of_nat [simp]:
       
   107   "int_of_integer (of_nat n) = of_nat n"
       
   108   by transfer rule
       
   109 
       
   110 lift_definition integer_of_nat :: "nat \<Rightarrow> integer"
       
   111   is "of_nat :: nat \<Rightarrow> int"
       
   112   .
       
   113 
       
   114 lemma int_of_integer_integer_of_nat [simp]:
       
   115   "int_of_integer (integer_of_nat n) = of_nat n"
       
   116   by transfer rule
       
   117 
       
   118 lift_definition nat_of_integer :: "integer \<Rightarrow> nat"
       
   119   is Int.nat
       
   120   .
       
   121 
       
   122 lemma nat_of_integer_of_nat [simp]:
       
   123   "nat_of_integer (of_nat n) = n"
       
   124   by transfer simp
       
   125 
       
   126 lemma int_of_integer_of_int [simp]:
       
   127   "int_of_integer (of_int k) = k"
       
   128   by transfer simp
       
   129 
       
   130 lemma nat_of_integer_integer_of_nat [simp]:
       
   131   "nat_of_integer (integer_of_nat n) = n"
       
   132   by transfer simp
       
   133 
       
   134 lemma integer_of_int_eq_of_int [simp, code_abbrev]:
       
   135   "integer_of_int = of_int"
       
   136   by transfer (simp add: fun_eq_iff)
       
   137 
       
   138 lemma of_int_integer_of [simp]:
       
   139   "of_int (int_of_integer k) = (k :: integer)"
       
   140   by transfer rule
       
   141 
       
   142 lemma int_of_integer_numeral [simp]:
       
   143   "int_of_integer (numeral k) = numeral k"
       
   144   by transfer rule
       
   145 
       
   146 lemma int_of_integer_neg_numeral [simp]:
       
   147   "int_of_integer (neg_numeral k) = neg_numeral k"
       
   148   by transfer rule
       
   149 
       
   150 lemma int_of_integer_sub [simp]:
       
   151   "int_of_integer (Num.sub k l) = Num.sub k l"
       
   152   by transfer rule
       
   153 
       
   154 instantiation integer :: "{ring_div, equal, linordered_idom}"
       
   155 begin
       
   156 
       
   157 lift_definition div_integer :: "integer \<Rightarrow> integer \<Rightarrow> integer"
       
   158   is "Divides.div :: int \<Rightarrow> int \<Rightarrow> int"
       
   159   .
       
   160 
       
   161 declare div_integer.rep_eq [simp]
       
   162 
       
   163 lift_definition mod_integer :: "integer \<Rightarrow> integer \<Rightarrow> integer"
       
   164   is "Divides.mod :: int \<Rightarrow> int \<Rightarrow> int"
       
   165   .
       
   166 
       
   167 declare mod_integer.rep_eq [simp]
       
   168 
       
   169 lift_definition abs_integer :: "integer \<Rightarrow> integer"
       
   170   is "abs :: int \<Rightarrow> int"
       
   171   .
       
   172 
       
   173 declare abs_integer.rep_eq [simp]
       
   174 
       
   175 lift_definition sgn_integer :: "integer \<Rightarrow> integer"
       
   176   is "sgn :: int \<Rightarrow> int"
       
   177   .
       
   178 
       
   179 declare sgn_integer.rep_eq [simp]
       
   180 
       
   181 lift_definition less_eq_integer :: "integer \<Rightarrow> integer \<Rightarrow> bool"
       
   182   is "less_eq :: int \<Rightarrow> int \<Rightarrow> bool"
       
   183   .
       
   184 
       
   185 lift_definition less_integer :: "integer \<Rightarrow> integer \<Rightarrow> bool"
       
   186   is "less :: int \<Rightarrow> int \<Rightarrow> bool"
       
   187   .
       
   188 
       
   189 lift_definition equal_integer :: "integer \<Rightarrow> integer \<Rightarrow> bool"
       
   190   is "HOL.equal :: int \<Rightarrow> int \<Rightarrow> bool"
       
   191   .
       
   192 
       
   193 instance proof
       
   194 qed (transfer, simp add: algebra_simps equal less_le_not_le [symmetric] mult_strict_right_mono linear)+
       
   195 
       
   196 end
       
   197 
       
   198 lemma [transfer_rule]:
       
   199   "fun_rel cr_integer (fun_rel cr_integer cr_integer) (min :: _ \<Rightarrow> _ \<Rightarrow> int) (min :: _ \<Rightarrow> _ \<Rightarrow> integer)"
       
   200   by (unfold min_def [abs_def]) transfer_prover
       
   201 
       
   202 lemma [transfer_rule]:
       
   203   "fun_rel cr_integer (fun_rel cr_integer cr_integer) (max :: _ \<Rightarrow> _ \<Rightarrow> int) (max :: _ \<Rightarrow> _ \<Rightarrow> integer)"
       
   204   by (unfold max_def [abs_def]) transfer_prover
       
   205 
       
   206 lemma int_of_integer_min [simp]:
       
   207   "int_of_integer (min k l) = min (int_of_integer k) (int_of_integer l)"
       
   208   by transfer rule
       
   209 
       
   210 lemma int_of_integer_max [simp]:
       
   211   "int_of_integer (max k l) = max (int_of_integer k) (int_of_integer l)"
       
   212   by transfer rule
       
   213 
       
   214 lemma nat_of_integer_non_positive [simp]:
       
   215   "k \<le> 0 \<Longrightarrow> nat_of_integer k = 0"
       
   216   by transfer simp
       
   217 
       
   218 lemma of_nat_of_integer [simp]:
       
   219   "of_nat (nat_of_integer k) = max 0 k"
       
   220   by transfer auto
       
   221 
       
   222 
       
   223 subsection {* Code theorems for target language integers *}
       
   224 
       
   225 text {* Constructors *}
       
   226 
       
   227 definition Pos :: "num \<Rightarrow> integer"
       
   228 where
       
   229   [simp, code_abbrev]: "Pos = numeral"
       
   230 
       
   231 lemma [transfer_rule]:
       
   232   "fun_rel HOL.eq cr_integer numeral Pos"
       
   233   by simp transfer_prover
       
   234 
       
   235 definition Neg :: "num \<Rightarrow> integer"
       
   236 where
       
   237   [simp, code_abbrev]: "Neg = neg_numeral"
       
   238 
       
   239 lemma [transfer_rule]:
       
   240   "fun_rel HOL.eq cr_integer neg_numeral Neg"
       
   241   by simp transfer_prover
       
   242 
       
   243 code_datatype "0::integer" Pos Neg
       
   244 
       
   245 
       
   246 text {* Auxiliary operations *}
       
   247 
       
   248 lift_definition dup :: "integer \<Rightarrow> integer"
       
   249   is "\<lambda>k::int. k + k"
       
   250   .
       
   251 
       
   252 lemma dup_code [code]:
       
   253   "dup 0 = 0"
       
   254   "dup (Pos n) = Pos (Num.Bit0 n)"
       
   255   "dup (Neg n) = Neg (Num.Bit0 n)"
       
   256   by (transfer, simp only: neg_numeral_def numeral_Bit0 minus_add_distrib)+
       
   257 
       
   258 lift_definition sub :: "num \<Rightarrow> num \<Rightarrow> integer"
       
   259   is "\<lambda>m n. numeral m - numeral n :: int"
       
   260   .
       
   261 
       
   262 lemma sub_code [code]:
       
   263   "sub Num.One Num.One = 0"
       
   264   "sub (Num.Bit0 m) Num.One = Pos (Num.BitM m)"
       
   265   "sub (Num.Bit1 m) Num.One = Pos (Num.Bit0 m)"
       
   266   "sub Num.One (Num.Bit0 n) = Neg (Num.BitM n)"
       
   267   "sub Num.One (Num.Bit1 n) = Neg (Num.Bit0 n)"
       
   268   "sub (Num.Bit0 m) (Num.Bit0 n) = dup (sub m n)"
       
   269   "sub (Num.Bit1 m) (Num.Bit1 n) = dup (sub m n)"
       
   270   "sub (Num.Bit1 m) (Num.Bit0 n) = dup (sub m n) + 1"
       
   271   "sub (Num.Bit0 m) (Num.Bit1 n) = dup (sub m n) - 1"
       
   272   by (transfer, simp add: dbl_def dbl_inc_def dbl_dec_def)+
       
   273 
       
   274 
       
   275 text {* Implementations *}
       
   276 
       
   277 lemma one_integer_code [code, code_unfold]:
       
   278   "1 = Pos Num.One"
       
   279   by simp
       
   280 
       
   281 lemma plus_integer_code [code]:
       
   282   "k + 0 = (k::integer)"
       
   283   "0 + l = (l::integer)"
       
   284   "Pos m + Pos n = Pos (m + n)"
       
   285   "Pos m + Neg n = sub m n"
       
   286   "Neg m + Pos n = sub n m"
       
   287   "Neg m + Neg n = Neg (m + n)"
       
   288   by (transfer, simp)+
       
   289 
       
   290 lemma uminus_integer_code [code]:
       
   291   "uminus 0 = (0::integer)"
       
   292   "uminus (Pos m) = Neg m"
       
   293   "uminus (Neg m) = Pos m"
       
   294   by simp_all
       
   295 
       
   296 lemma minus_integer_code [code]:
       
   297   "k - 0 = (k::integer)"
       
   298   "0 - l = uminus (l::integer)"
       
   299   "Pos m - Pos n = sub m n"
       
   300   "Pos m - Neg n = Pos (m + n)"
       
   301   "Neg m - Pos n = Neg (m + n)"
       
   302   "Neg m - Neg n = sub n m"
       
   303   by (transfer, simp)+
       
   304 
       
   305 lemma abs_integer_code [code]:
       
   306   "\<bar>k\<bar> = (if (k::integer) < 0 then - k else k)"
       
   307   by simp
       
   308 
       
   309 lemma sgn_integer_code [code]:
       
   310   "sgn k = (if k = 0 then 0 else if (k::integer) < 0 then - 1 else 1)"
       
   311   by simp
       
   312 
       
   313 lemma times_integer_code [code]:
       
   314   "k * 0 = (0::integer)"
       
   315   "0 * l = (0::integer)"
       
   316   "Pos m * Pos n = Pos (m * n)"
       
   317   "Pos m * Neg n = Neg (m * n)"
       
   318   "Neg m * Pos n = Neg (m * n)"
       
   319   "Neg m * Neg n = Pos (m * n)"
       
   320   by simp_all
       
   321 
       
   322 definition divmod_integer :: "integer \<Rightarrow> integer \<Rightarrow> integer \<times> integer"
       
   323 where
       
   324   "divmod_integer k l = (k div l, k mod l)"
       
   325 
       
   326 lemma fst_divmod [simp]:
       
   327   "fst (divmod_integer k l) = k div l"
       
   328   by (simp add: divmod_integer_def)
       
   329 
       
   330 lemma snd_divmod [simp]:
       
   331   "snd (divmod_integer k l) = k mod l"
       
   332   by (simp add: divmod_integer_def)
       
   333 
       
   334 definition divmod_abs :: "integer \<Rightarrow> integer \<Rightarrow> integer \<times> integer"
       
   335 where
       
   336   "divmod_abs k l = (\<bar>k\<bar> div \<bar>l\<bar>, \<bar>k\<bar> mod \<bar>l\<bar>)"
       
   337 
       
   338 lemma fst_divmod_abs [simp]:
       
   339   "fst (divmod_abs k l) = \<bar>k\<bar> div \<bar>l\<bar>"
       
   340   by (simp add: divmod_abs_def)
       
   341 
       
   342 lemma snd_divmod_abs [simp]:
       
   343   "snd (divmod_abs k l) = \<bar>k\<bar> mod \<bar>l\<bar>"
       
   344   by (simp add: divmod_abs_def)
       
   345 
       
   346 lemma divmod_abs_terminate_code [code]:
       
   347   "divmod_abs (Neg k) (Neg l) = divmod_abs (Pos k) (Pos l)"
       
   348   "divmod_abs (Neg k) (Pos l) = divmod_abs (Pos k) (Pos l)"
       
   349   "divmod_abs (Pos k) (Neg l) = divmod_abs (Pos k) (Pos l)"
       
   350   "divmod_abs j 0 = (0, \<bar>j\<bar>)"
       
   351   "divmod_abs 0 j = (0, 0)"
       
   352   by (simp_all add: prod_eq_iff)
       
   353 
       
   354 lemma divmod_abs_rec_code [code]:
       
   355   "divmod_abs (Pos k) (Pos l) =
       
   356     (let j = sub k l in
       
   357        if j < 0 then (0, Pos k)
       
   358        else let (q, r) = divmod_abs j (Pos l) in (q + 1, r))"
       
   359   apply (simp add: prod_eq_iff Let_def prod_case_beta)
       
   360   apply transfer
       
   361   apply (simp add: sub_non_negative sub_negative div_pos_pos_trivial mod_pos_pos_trivial div_pos_geq mod_pos_geq)
       
   362   done
       
   363 
       
   364 lemma divmod_integer_code [code]:
       
   365   "divmod_integer k l =
       
   366     (if k = 0 then (0, 0) else if l = 0 then (0, k) else
       
   367     (apsnd \<circ> times \<circ> sgn) l (if sgn k = sgn l
       
   368       then divmod_abs k l
       
   369       else (let (r, s) = divmod_abs k l in
       
   370         if s = 0 then (- r, 0) else (- r - 1, \<bar>l\<bar> - s))))"
       
   371 proof -
       
   372   have aux1: "\<And>k l::int. sgn k = sgn l \<longleftrightarrow> k = 0 \<and> l = 0 \<or> 0 < l \<and> 0 < k \<or> l < 0 \<and> k < 0"
       
   373     by (auto simp add: sgn_if)
       
   374   have aux2: "\<And>q::int. - int_of_integer k = int_of_integer l * q \<longleftrightarrow> int_of_integer k = int_of_integer l * - q" by auto
       
   375   show ?thesis
       
   376     by (simp add: prod_eq_iff integer_eq_iff prod_case_beta aux1)
       
   377       (auto simp add: zdiv_zminus1_eq_if zmod_zminus1_eq_if div_minus_right mod_minus_right aux2)
       
   378 qed
       
   379 
       
   380 lemma div_integer_code [code]:
       
   381   "k div l = fst (divmod_integer k l)"
       
   382   by simp
       
   383 
       
   384 lemma mod_integer_code [code]:
       
   385   "k mod l = snd (divmod_integer k l)"
       
   386   by simp
       
   387 
       
   388 lemma equal_integer_code [code]:
       
   389   "HOL.equal 0 (0::integer) \<longleftrightarrow> True"
       
   390   "HOL.equal 0 (Pos l) \<longleftrightarrow> False"
       
   391   "HOL.equal 0 (Neg l) \<longleftrightarrow> False"
       
   392   "HOL.equal (Pos k) 0 \<longleftrightarrow> False"
       
   393   "HOL.equal (Pos k) (Pos l) \<longleftrightarrow> HOL.equal k l"
       
   394   "HOL.equal (Pos k) (Neg l) \<longleftrightarrow> False"
       
   395   "HOL.equal (Neg k) 0 \<longleftrightarrow> False"
       
   396   "HOL.equal (Neg k) (Pos l) \<longleftrightarrow> False"
       
   397   "HOL.equal (Neg k) (Neg l) \<longleftrightarrow> HOL.equal k l"
       
   398   by (simp_all add: equal)
       
   399 
       
   400 lemma equal_integer_refl [code nbe]:
       
   401   "HOL.equal (k::integer) k \<longleftrightarrow> True"
       
   402   by (fact equal_refl)
       
   403 
       
   404 lemma less_eq_integer_code [code]:
       
   405   "0 \<le> (0::integer) \<longleftrightarrow> True"
       
   406   "0 \<le> Pos l \<longleftrightarrow> True"
       
   407   "0 \<le> Neg l \<longleftrightarrow> False"
       
   408   "Pos k \<le> 0 \<longleftrightarrow> False"
       
   409   "Pos k \<le> Pos l \<longleftrightarrow> k \<le> l"
       
   410   "Pos k \<le> Neg l \<longleftrightarrow> False"
       
   411   "Neg k \<le> 0 \<longleftrightarrow> True"
       
   412   "Neg k \<le> Pos l \<longleftrightarrow> True"
       
   413   "Neg k \<le> Neg l \<longleftrightarrow> l \<le> k"
       
   414   by simp_all
       
   415 
       
   416 lemma less_integer_code [code]:
       
   417   "0 < (0::integer) \<longleftrightarrow> False"
       
   418   "0 < Pos l \<longleftrightarrow> True"
       
   419   "0 < Neg l \<longleftrightarrow> False"
       
   420   "Pos k < 0 \<longleftrightarrow> False"
       
   421   "Pos k < Pos l \<longleftrightarrow> k < l"
       
   422   "Pos k < Neg l \<longleftrightarrow> False"
       
   423   "Neg k < 0 \<longleftrightarrow> True"
       
   424   "Neg k < Pos l \<longleftrightarrow> True"
       
   425   "Neg k < Neg l \<longleftrightarrow> l < k"
       
   426   by simp_all
       
   427 
       
   428 lift_definition integer_of_num :: "num \<Rightarrow> integer"
       
   429   is "numeral :: num \<Rightarrow> int"
       
   430   .
       
   431 
       
   432 lemma integer_of_num [code]:
       
   433   "integer_of_num num.One = 1"
       
   434   "integer_of_num (num.Bit0 n) = (let k = integer_of_num n in k + k)"
       
   435   "integer_of_num (num.Bit1 n) = (let k = integer_of_num n in k + k + 1)"
       
   436   by (transfer, simp only: numeral.simps Let_def)+
       
   437 
       
   438 lift_definition num_of_integer :: "integer \<Rightarrow> num"
       
   439   is "num_of_nat \<circ> nat"
       
   440   .
       
   441 
       
   442 lemma num_of_integer_code [code]:
       
   443   "num_of_integer k = (if k \<le> 1 then Num.One
       
   444      else let
       
   445        (l, j) = divmod_integer k 2;
       
   446        l' = num_of_integer l;
       
   447        l'' = l' + l'
       
   448      in if j = 0 then l'' else l'' + Num.One)"
       
   449 proof -
       
   450   {
       
   451     assume "int_of_integer k mod 2 = 1"
       
   452     then have "nat (int_of_integer k mod 2) = nat 1" by simp
       
   453     moreover assume *: "1 < int_of_integer k"
       
   454     ultimately have **: "nat (int_of_integer k) mod 2 = 1" by (simp add: nat_mod_distrib)
       
   455     have "num_of_nat (nat (int_of_integer k)) =
       
   456       num_of_nat (2 * (nat (int_of_integer k) div 2) + nat (int_of_integer k) mod 2)"
       
   457       by simp
       
   458     then have "num_of_nat (nat (int_of_integer k)) =
       
   459       num_of_nat (nat (int_of_integer k) div 2 + nat (int_of_integer k) div 2 + nat (int_of_integer k) mod 2)"
       
   460       by (simp add: mult_2)
       
   461     with ** have "num_of_nat (nat (int_of_integer k)) =
       
   462       num_of_nat (nat (int_of_integer k) div 2 + nat (int_of_integer k) div 2 + 1)"
       
   463       by simp
       
   464   }
       
   465   note aux = this
       
   466   show ?thesis
       
   467     by (auto simp add: num_of_integer_def nat_of_integer_def Let_def prod_case_beta
       
   468       not_le integer_eq_iff less_eq_integer_def
       
   469       nat_mult_distrib nat_div_distrib num_of_nat_One num_of_nat_plus_distrib
       
   470        mult_2 [where 'a=nat] aux add_One)
       
   471 qed
       
   472 
       
   473 lemma nat_of_integer_code [code]:
       
   474   "nat_of_integer k = (if k \<le> 0 then 0
       
   475      else let
       
   476        (l, j) = divmod_integer k 2;
       
   477        l' = nat_of_integer l;
       
   478        l'' = l' + l'
       
   479      in if j = 0 then l'' else l'' + 1)"
       
   480 proof -
       
   481   obtain j where "k = integer_of_int j"
       
   482   proof
       
   483     show "k = integer_of_int (int_of_integer k)" by simp
       
   484   qed
       
   485   moreover have "2 * (j div 2) = j - j mod 2"
       
   486     by (simp add: zmult_div_cancel mult_commute)
       
   487   ultimately show ?thesis
       
   488     by (auto simp add: split_def Let_def mod_integer_def nat_of_integer_def not_le
       
   489       nat_add_distrib [symmetric] Suc_nat_eq_nat_zadd1)
       
   490 qed
       
   491 
       
   492 lemma int_of_integer_code [code]:
       
   493   "int_of_integer k = (if k < 0 then - (int_of_integer (- k))
       
   494      else if k = 0 then 0
       
   495      else let
       
   496        (l, j) = divmod_integer k 2;
       
   497        l' = 2 * int_of_integer l
       
   498      in if j = 0 then l' else l' + 1)"
       
   499   by (auto simp add: split_def Let_def integer_eq_iff zmult_div_cancel)
       
   500 
       
   501 lemma integer_of_int_code [code]:
       
   502   "integer_of_int k = (if k < 0 then - (integer_of_int (- k))
       
   503      else if k = 0 then 0
       
   504      else let
       
   505        (l, j) = divmod_int k 2;
       
   506        l' = 2 * integer_of_int l
       
   507      in if j = 0 then l' else l' + 1)"
       
   508   by (auto simp add: split_def Let_def integer_eq_iff zmult_div_cancel)
       
   509 
       
   510 hide_const (open) Pos Neg sub dup divmod_abs
       
   511 
       
   512 
       
   513 subsection {* Serializer setup for target language integers *}
       
   514 
       
   515 code_reserved Eval abs
       
   516 
       
   517 code_type integer
       
   518   (SML "IntInf.int")
       
   519   (OCaml "Big'_int.big'_int")
       
   520   (Haskell "Integer")
       
   521   (Scala "BigInt")
       
   522   (Eval "int")
       
   523 
       
   524 code_instance integer :: equal
       
   525   (Haskell -)
       
   526 
       
   527 code_const "0::integer"
       
   528   (SML "0")
       
   529   (OCaml "Big'_int.zero'_big'_int")
       
   530   (Haskell "0")
       
   531   (Scala "BigInt(0)")
       
   532 
       
   533 setup {*
       
   534   fold (Numeral.add_code @{const_name Code_Numeral_Types.Pos}
       
   535     false Code_Printer.literal_numeral) ["SML", "OCaml", "Haskell", "Scala"]
       
   536 *}
       
   537 
       
   538 setup {*
       
   539   fold (Numeral.add_code @{const_name Code_Numeral_Types.Neg}
       
   540     true Code_Printer.literal_numeral) ["SML", "OCaml", "Haskell", "Scala"]
       
   541 *}
       
   542 
       
   543 code_const "plus :: integer \<Rightarrow> _ \<Rightarrow> _"
       
   544   (SML "IntInf.+ ((_), (_))")
       
   545   (OCaml "Big'_int.add'_big'_int")
       
   546   (Haskell infixl 6 "+")
       
   547   (Scala infixl 7 "+")
       
   548   (Eval infixl 8 "+")
       
   549 
       
   550 code_const "uminus :: integer \<Rightarrow> _"
       
   551   (SML "IntInf.~")
       
   552   (OCaml "Big'_int.minus'_big'_int")
       
   553   (Haskell "negate")
       
   554   (Scala "!(- _)")
       
   555   (Eval "~/ _")
       
   556 
       
   557 code_const "minus :: integer \<Rightarrow> _"
       
   558   (SML "IntInf.- ((_), (_))")
       
   559   (OCaml "Big'_int.sub'_big'_int")
       
   560   (Haskell infixl 6 "-")
       
   561   (Scala infixl 7 "-")
       
   562   (Eval infixl 8 "-")
       
   563 
       
   564 code_const Code_Numeral_Types.dup
       
   565   (SML "IntInf.*/ (2,/ (_))")
       
   566   (OCaml "Big'_int.mult'_big'_int/ (Big'_int.big'_int'_of'_int/ 2)")
       
   567   (Haskell "!(2 * _)")
       
   568   (Scala "!(2 * _)")
       
   569   (Eval "!(2 * _)")
       
   570 
       
   571 code_const Code_Numeral_Types.sub
       
   572   (SML "!(raise/ Fail/ \"sub\")")
       
   573   (OCaml "failwith/ \"sub\"")
       
   574   (Haskell "error/ \"sub\"")
       
   575   (Scala "!sys.error(\"sub\")")
       
   576 
       
   577 code_const "times :: integer \<Rightarrow> _ \<Rightarrow> _"
       
   578   (SML "IntInf.* ((_), (_))")
       
   579   (OCaml "Big'_int.mult'_big'_int")
       
   580   (Haskell infixl 7 "*")
       
   581   (Scala infixl 8 "*")
       
   582   (Eval infixl 9 "*")
       
   583 
       
   584 code_const Code_Numeral_Types.divmod_abs
       
   585   (SML "IntInf.divMod/ (IntInf.abs _,/ IntInf.abs _)")
       
   586   (OCaml "Big'_int.quomod'_big'_int/ (Big'_int.abs'_big'_int _)/ (Big'_int.abs'_big'_int _)")
       
   587   (Haskell "divMod/ (abs _)/ (abs _)")
       
   588   (Scala "!((k: BigInt) => (l: BigInt) =>/ if (l == 0)/ (BigInt(0), k) else/ (k.abs '/% l.abs))")
       
   589   (Eval "Integer.div'_mod/ (abs _)/ (abs _)")
       
   590 
       
   591 code_const "HOL.equal :: integer \<Rightarrow> _ \<Rightarrow> bool"
       
   592   (SML "!((_ : IntInf.int) = _)")
       
   593   (OCaml "Big'_int.eq'_big'_int")
       
   594   (Haskell infix 4 "==")
       
   595   (Scala infixl 5 "==")
       
   596   (Eval infixl 6 "=")
       
   597 
       
   598 code_const "less_eq :: integer \<Rightarrow> _ \<Rightarrow> bool"
       
   599   (SML "IntInf.<= ((_), (_))")
       
   600   (OCaml "Big'_int.le'_big'_int")
       
   601   (Haskell infix 4 "<=")
       
   602   (Scala infixl 4 "<=")
       
   603   (Eval infixl 6 "<=")
       
   604 
       
   605 code_const "less :: integer \<Rightarrow> _ \<Rightarrow> bool"
       
   606   (SML "IntInf.< ((_), (_))")
       
   607   (OCaml "Big'_int.lt'_big'_int")
       
   608   (Haskell infix 4 "<")
       
   609   (Scala infixl 4 "<")
       
   610   (Eval infixl 6 "<")
       
   611 
       
   612 code_modulename SML
       
   613   Code_Numeral_Types Arith
       
   614 
       
   615 code_modulename OCaml
       
   616   Code_Numeral_Types Arith
       
   617 
       
   618 code_modulename Haskell
       
   619   Code_Numeral_Types Arith
       
   620 
       
   621 
       
   622 subsection {* Type of target language naturals *}
       
   623 
       
   624 typedef natural = "UNIV \<Colon> nat set"
       
   625   morphisms nat_of_natural natural_of_nat ..
       
   626 
       
   627 setup_lifting (no_code) type_definition_natural
       
   628 
       
   629 lemma natural_eq_iff [termination_simp]:
       
   630   "m = n \<longleftrightarrow> nat_of_natural m = nat_of_natural n"
       
   631   by transfer rule
       
   632 
       
   633 lemma natural_eqI:
       
   634   "nat_of_natural m = nat_of_natural n \<Longrightarrow> m = n"
       
   635   using natural_eq_iff [of m n] by simp
       
   636 
       
   637 lemma nat_of_natural_of_nat_inverse [simp]:
       
   638   "nat_of_natural (natural_of_nat n) = n"
       
   639   by transfer rule
       
   640 
       
   641 lemma natural_of_nat_of_natural_inverse [simp]:
       
   642   "natural_of_nat (nat_of_natural n) = n"
       
   643   by transfer rule
       
   644 
       
   645 instantiation natural :: "{comm_monoid_diff, semiring_1}"
       
   646 begin
       
   647 
       
   648 lift_definition zero_natural :: natural
       
   649   is "0 :: nat"
       
   650   .
       
   651 
       
   652 declare zero_natural.rep_eq [simp]
       
   653 
       
   654 lift_definition one_natural :: natural
       
   655   is "1 :: nat"
       
   656   .
       
   657 
       
   658 declare one_natural.rep_eq [simp]
       
   659 
       
   660 lift_definition plus_natural :: "natural \<Rightarrow> natural \<Rightarrow> natural"
       
   661   is "plus :: nat \<Rightarrow> nat \<Rightarrow> nat"
       
   662   .
       
   663 
       
   664 declare plus_natural.rep_eq [simp]
       
   665 
       
   666 lift_definition minus_natural :: "natural \<Rightarrow> natural \<Rightarrow> natural"
       
   667   is "minus :: nat \<Rightarrow> nat \<Rightarrow> nat"
       
   668   .
       
   669 
       
   670 declare minus_natural.rep_eq [simp]
       
   671 
       
   672 lift_definition times_natural :: "natural \<Rightarrow> natural \<Rightarrow> natural"
       
   673   is "times :: nat \<Rightarrow> nat \<Rightarrow> nat"
       
   674   .
       
   675 
       
   676 declare times_natural.rep_eq [simp]
       
   677 
       
   678 instance proof
       
   679 qed (transfer, simp add: algebra_simps)+
       
   680 
       
   681 end
       
   682 
       
   683 lemma [transfer_rule]:
       
   684   "fun_rel HOL.eq cr_natural (\<lambda>n::nat. n) (of_nat :: nat \<Rightarrow> natural)"
       
   685 proof -
       
   686   have "fun_rel HOL.eq cr_natural (of_nat :: nat \<Rightarrow> nat) (of_nat :: nat \<Rightarrow> natural)"
       
   687     by (unfold of_nat_def [abs_def]) transfer_prover
       
   688   then show ?thesis by (simp add: id_def)
       
   689 qed
       
   690 
       
   691 lemma [transfer_rule]:
       
   692   "fun_rel HOL.eq cr_natural (numeral :: num \<Rightarrow> nat) (numeral :: num \<Rightarrow> natural)"
       
   693 proof -
       
   694   have "fun_rel HOL.eq cr_natural (numeral :: num \<Rightarrow> nat) (\<lambda>n. of_nat (numeral n))"
       
   695     by transfer_prover
       
   696   then show ?thesis by simp
       
   697 qed
       
   698 
       
   699 lemma nat_of_natural_of_nat [simp]:
       
   700   "nat_of_natural (of_nat n) = n"
       
   701   by transfer rule
       
   702 
       
   703 lemma natural_of_nat_of_nat [simp, code_abbrev]:
       
   704   "natural_of_nat = of_nat"
       
   705   by transfer rule
       
   706 
       
   707 lemma of_nat_of_natural [simp]:
       
   708   "of_nat (nat_of_natural n) = n"
       
   709   by transfer rule
       
   710 
       
   711 lemma nat_of_natural_numeral [simp]:
       
   712   "nat_of_natural (numeral k) = numeral k"
       
   713   by transfer rule
       
   714 
       
   715 instantiation natural :: "{semiring_div, equal, linordered_semiring}"
       
   716 begin
       
   717 
       
   718 lift_definition div_natural :: "natural \<Rightarrow> natural \<Rightarrow> natural"
       
   719   is "Divides.div :: nat \<Rightarrow> nat \<Rightarrow> nat"
       
   720   .
       
   721 
       
   722 declare div_natural.rep_eq [simp]
       
   723 
       
   724 lift_definition mod_natural :: "natural \<Rightarrow> natural \<Rightarrow> natural"
       
   725   is "Divides.mod :: nat \<Rightarrow> nat \<Rightarrow> nat"
       
   726   .
       
   727 
       
   728 declare mod_natural.rep_eq [simp]
       
   729 
       
   730 lift_definition less_eq_natural :: "natural \<Rightarrow> natural \<Rightarrow> bool"
       
   731   is "less_eq :: nat \<Rightarrow> nat \<Rightarrow> bool"
       
   732   .
       
   733 
       
   734 declare less_eq_natural.rep_eq [termination_simp]
       
   735 
       
   736 lift_definition less_natural :: "natural \<Rightarrow> natural \<Rightarrow> bool"
       
   737   is "less :: nat \<Rightarrow> nat \<Rightarrow> bool"
       
   738   .
       
   739 
       
   740 declare less_natural.rep_eq [termination_simp]
       
   741 
       
   742 lift_definition equal_natural :: "natural \<Rightarrow> natural \<Rightarrow> bool"
       
   743   is "HOL.equal :: nat \<Rightarrow> nat \<Rightarrow> bool"
       
   744   .
       
   745 
       
   746 instance proof
       
   747 qed (transfer, simp add: algebra_simps equal less_le_not_le [symmetric] linear)+
       
   748 
       
   749 end
       
   750 
       
   751 lemma [transfer_rule]:
       
   752   "fun_rel cr_natural (fun_rel cr_natural cr_natural) (min :: _ \<Rightarrow> _ \<Rightarrow> nat) (min :: _ \<Rightarrow> _ \<Rightarrow> natural)"
       
   753   by (unfold min_def [abs_def]) transfer_prover
       
   754 
       
   755 lemma [transfer_rule]:
       
   756   "fun_rel cr_natural (fun_rel cr_natural cr_natural) (max :: _ \<Rightarrow> _ \<Rightarrow> nat) (max :: _ \<Rightarrow> _ \<Rightarrow> natural)"
       
   757   by (unfold max_def [abs_def]) transfer_prover
       
   758 
       
   759 lemma nat_of_natural_min [simp]:
       
   760   "nat_of_natural (min k l) = min (nat_of_natural k) (nat_of_natural l)"
       
   761   by transfer rule
       
   762 
       
   763 lemma nat_of_natural_max [simp]:
       
   764   "nat_of_natural (max k l) = max (nat_of_natural k) (nat_of_natural l)"
       
   765   by transfer rule
       
   766 
       
   767 lift_definition natural_of_integer :: "integer \<Rightarrow> natural"
       
   768   is "nat :: int \<Rightarrow> nat"
       
   769   .
       
   770 
       
   771 lift_definition integer_of_natural :: "natural \<Rightarrow> integer"
       
   772   is "of_nat :: nat \<Rightarrow> int"
       
   773   .
       
   774 
       
   775 lemma natural_of_integer_of_natural [simp]:
       
   776   "natural_of_integer (integer_of_natural n) = n"
       
   777   by transfer simp
       
   778 
       
   779 lemma integer_of_natural_of_integer [simp]:
       
   780   "integer_of_natural (natural_of_integer k) = max 0 k"
       
   781   by transfer auto
       
   782 
       
   783 lemma int_of_integer_of_natural [simp]:
       
   784   "int_of_integer (integer_of_natural n) = of_nat (nat_of_natural n)"
       
   785   by transfer rule
       
   786 
       
   787 lemma integer_of_natural_of_nat [simp]:
       
   788   "integer_of_natural (of_nat n) = of_nat n"
       
   789   by transfer rule
       
   790 
       
   791 lemma [measure_function]:
       
   792   "is_measure nat_of_natural"
       
   793   by (rule is_measure_trivial)
       
   794 
       
   795 
       
   796 subsection {* Inductive represenation of target language naturals *}
       
   797 
       
   798 lift_definition Suc :: "natural \<Rightarrow> natural"
       
   799   is Nat.Suc
       
   800   .
       
   801 
       
   802 declare Suc.rep_eq [simp]
       
   803 
       
   804 rep_datatype "0::natural" Suc
       
   805   by (transfer, fact nat.induct nat.inject nat.distinct)+
       
   806 
       
   807 lemma natural_case [case_names nat, cases type: natural]:
       
   808   fixes m :: natural
       
   809   assumes "\<And>n. m = of_nat n \<Longrightarrow> P"
       
   810   shows P
       
   811   using assms by transfer blast
       
   812 
       
   813 lemma [simp, code]:
       
   814   "natural_size = nat_of_natural"
       
   815 proof (rule ext)
       
   816   fix n
       
   817   show "natural_size n = nat_of_natural n"
       
   818     by (induct n) simp_all
       
   819 qed
       
   820 
       
   821 lemma [simp, code]:
       
   822   "size = nat_of_natural"
       
   823 proof (rule ext)
       
   824   fix n
       
   825   show "size n = nat_of_natural n"
       
   826     by (induct n) simp_all
       
   827 qed
       
   828 
       
   829 lemma natural_decr [termination_simp]:
       
   830   "n \<noteq> 0 \<Longrightarrow> nat_of_natural n - Nat.Suc 0 < nat_of_natural n"
       
   831   by transfer simp
       
   832 
       
   833 lemma natural_zero_minus_one:
       
   834   "(0::natural) - 1 = 0"
       
   835   by simp
       
   836 
       
   837 lemma Suc_natural_minus_one:
       
   838   "Suc n - 1 = n"
       
   839   by transfer simp
       
   840 
       
   841 hide_const (open) Suc
       
   842 
       
   843 
       
   844 subsection {* Code refinement for target language naturals *}
       
   845 
       
   846 lift_definition Nat :: "integer \<Rightarrow> natural"
       
   847   is nat
       
   848   .
       
   849 
       
   850 lemma [code_post]:
       
   851   "Nat 0 = 0"
       
   852   "Nat 1 = 1"
       
   853   "Nat (numeral k) = numeral k"
       
   854   by (transfer, simp)+
       
   855 
       
   856 lemma [code abstype]:
       
   857   "Nat (integer_of_natural n) = n"
       
   858   by transfer simp
       
   859 
       
   860 lemma [code abstract]:
       
   861   "integer_of_natural (natural_of_nat n) = of_nat n"
       
   862   by simp
       
   863 
       
   864 lemma [code abstract]:
       
   865   "integer_of_natural (natural_of_integer k) = max 0 k"
       
   866   by simp
       
   867 
       
   868 lemma [code_abbrev]:
       
   869   "natural_of_integer (Code_Numeral_Types.Pos k) = numeral k"
       
   870   by transfer simp
       
   871 
       
   872 lemma [code abstract]:
       
   873   "integer_of_natural 0 = 0"
       
   874   by transfer simp
       
   875 
       
   876 lemma [code abstract]:
       
   877   "integer_of_natural 1 = 1"
       
   878   by transfer simp
       
   879 
       
   880 lemma [code abstract]:
       
   881   "integer_of_natural (Code_Numeral_Types.Suc n) = integer_of_natural n + 1"
       
   882   by transfer simp
       
   883 
       
   884 lemma [code]:
       
   885   "nat_of_natural = nat_of_integer \<circ> integer_of_natural"
       
   886   by transfer (simp add: fun_eq_iff)
       
   887 
       
   888 lemma [code, code_unfold]:
       
   889   "natural_case f g n = (if n = 0 then f else g (n - 1))"
       
   890   by (cases n rule: natural.exhaust) (simp_all, simp add: Suc_def)
       
   891 
       
   892 declare natural.recs [code del]
       
   893 
       
   894 lemma [code abstract]:
       
   895   "integer_of_natural (m + n) = integer_of_natural m + integer_of_natural n"
       
   896   by transfer simp
       
   897 
       
   898 lemma [code abstract]:
       
   899   "integer_of_natural (m - n) = max 0 (integer_of_natural m - integer_of_natural n)"
       
   900   by transfer simp
       
   901 
       
   902 lemma [code abstract]:
       
   903   "integer_of_natural (m * n) = integer_of_natural m * integer_of_natural n"
       
   904   by transfer (simp add: of_nat_mult)
       
   905 
       
   906 lemma [code abstract]:
       
   907   "integer_of_natural (m div n) = integer_of_natural m div integer_of_natural n"
       
   908   by transfer (simp add: zdiv_int)
       
   909 
       
   910 lemma [code abstract]:
       
   911   "integer_of_natural (m mod n) = integer_of_natural m mod integer_of_natural n"
       
   912   by transfer (simp add: zmod_int)
       
   913 
       
   914 lemma [code]:
       
   915   "HOL.equal m n \<longleftrightarrow> HOL.equal (integer_of_natural m) (integer_of_natural n)"
       
   916   by transfer (simp add: equal)
       
   917 
       
   918 lemma [code nbe]:
       
   919   "HOL.equal n (n::natural) \<longleftrightarrow> True"
       
   920   by (simp add: equal)
       
   921 
       
   922 lemma [code]:
       
   923   "m \<le> n \<longleftrightarrow> integer_of_natural m \<le> integer_of_natural n"
       
   924   by transfer simp
       
   925 
       
   926 lemma [code]:
       
   927   "m < n \<longleftrightarrow> integer_of_natural m < integer_of_natural n"
       
   928   by transfer simp
       
   929 
       
   930 hide_const (open) Nat
       
   931 
       
   932 
       
   933 code_reflect Code_Numeral_Types
       
   934   datatypes natural = _
       
   935   functions integer_of_natural natural_of_integer
       
   936 
       
   937 end
       
   938