src/HOL/ex/SList.thy
changeset 3125 3f0ab2c306f7
parent 3124 1c0dfa7ebb72
child 3126 feb7a5d01c1e
equal deleted inserted replaced
3124:1c0dfa7ebb72 3125:3f0ab2c306f7
     1 (*  Title:      HOL/ex/SList.thy
       
     2     ID:         $Id$
       
     3     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
       
     4     Copyright   1993  University of Cambridge
       
     5 
       
     6 Definition of type 'a list (strict lists) by a least fixed point
       
     7 
       
     8 We use          list(A) == lfp(%Z. {NUMB(0)} <+> A <*> Z)
       
     9 and not         list    == lfp(%Z. {NUMB(0)} <+> range(Leaf) <*> Z)
       
    10 so that list can serve as a "functor" for defining other recursive types
       
    11 *)
       
    12 
       
    13 SList = Sexp +
       
    14 
       
    15 types
       
    16   'a list
       
    17 
       
    18 arities
       
    19   list :: (term) term
       
    20 
       
    21 
       
    22 consts
       
    23 
       
    24   list        :: 'a item set => 'a item set
       
    25   Rep_list    :: 'a list => 'a item
       
    26   Abs_list    :: 'a item => 'a list
       
    27   NIL         :: 'a item
       
    28   CONS        :: ['a item, 'a item] => 'a item
       
    29   Nil         :: 'a list
       
    30   "#"         :: ['a, 'a list] => 'a list                         (infixr 65)
       
    31   List_case   :: ['b, ['a item, 'a item]=>'b, 'a item] => 'b
       
    32   List_rec    :: ['a item, 'b, ['a item, 'a item, 'b]=>'b] => 'b
       
    33   list_case   :: ['b, ['a, 'a list]=>'b, 'a list] => 'b
       
    34   list_rec    :: ['a list, 'b, ['a, 'a list, 'b]=>'b] => 'b
       
    35   Rep_map     :: ('b => 'a item) => ('b list => 'a item)
       
    36   Abs_map     :: ('a item => 'b) => 'a item => 'b list
       
    37   null        :: 'a list => bool
       
    38   hd          :: 'a list => 'a
       
    39   tl,ttl      :: 'a list => 'a list
       
    40   set_of_list :: ('a list => 'a set)
       
    41   mem         :: ['a, 'a list] => bool                            (infixl 55)
       
    42   map         :: ('a=>'b) => ('a list => 'b list)
       
    43   "@"         :: ['a list, 'a list] => 'a list                    (infixr 65)
       
    44   filter      :: ['a => bool, 'a list] => 'a list
       
    45 
       
    46   (* list Enumeration *)
       
    47 
       
    48   "[]"        :: 'a list                              ("[]")
       
    49   "@list"     :: args => 'a list                      ("[(_)]")
       
    50 
       
    51   (* Special syntax for filter *)
       
    52   "@filter"   :: [idt, 'a list, bool] => 'a list      ("(1[_:_ ./ _])")
       
    53 
       
    54 translations
       
    55   "[x, xs]"     == "x#[xs]"
       
    56   "[x]"         == "x#[]"
       
    57   "[]"          == "Nil"
       
    58 
       
    59   "case xs of Nil => a | y#ys => b" == "list_case a (%y ys.b) xs"
       
    60 
       
    61   "[x:xs . P]"  == "filter (%x.P) xs"
       
    62 
       
    63 defs
       
    64   (* Defining the Concrete Constructors *)
       
    65   NIL_def       "NIL == In0(Numb(0))"
       
    66   CONS_def      "CONS M N == In1(M $ N)"
       
    67 
       
    68 inductive "list(A)"
       
    69   intrs
       
    70     NIL_I  "NIL: list(A)"
       
    71     CONS_I "[| a: A;  M: list(A) |] ==> CONS a M : list(A)"
       
    72 
       
    73 rules
       
    74   (* Faking a Type Definition ... *)
       
    75   Rep_list          "Rep_list(xs): list(range(Leaf))"
       
    76   Rep_list_inverse  "Abs_list(Rep_list(xs)) = xs"
       
    77   Abs_list_inverse  "M: list(range(Leaf)) ==> Rep_list(Abs_list(M)) = M"
       
    78 
       
    79 
       
    80 defs
       
    81   (* Defining the Abstract Constructors *)
       
    82   Nil_def       "Nil == Abs_list(NIL)"
       
    83   Cons_def      "x#xs == Abs_list(CONS (Leaf x) (Rep_list xs))"
       
    84 
       
    85   List_case_def "List_case c d == Case (%x.c) (Split d)"
       
    86 
       
    87   (* list Recursion -- the trancl is Essential; see list.ML *)
       
    88 
       
    89   List_rec_def
       
    90    "List_rec M c d == wfrec (trancl pred_sexp)
       
    91                             (%g. List_case c (%x y. d x y (g y))) M"
       
    92 
       
    93   list_rec_def
       
    94    "list_rec l c d == 
       
    95    List_rec (Rep_list l) c (%x y r. d (inv Leaf x) (Abs_list y) r)"
       
    96 
       
    97   (* Generalized Map Functionals *)
       
    98 
       
    99   Rep_map_def "Rep_map f xs == list_rec xs NIL (%x l r. CONS (f x) r)"
       
   100   Abs_map_def "Abs_map g M == List_rec M Nil (%N L r. g(N)#r)"
       
   101 
       
   102   null_def      "null(xs)            == list_rec xs True (%x xs r.False)"
       
   103   hd_def        "hd(xs)              == list_rec xs (@x.True) (%x xs r.x)"
       
   104   tl_def        "tl(xs)              == list_rec xs (@xs.True) (%x xs r.xs)"
       
   105   (* a total version of tl: *)
       
   106   ttl_def       "ttl(xs)             == list_rec xs [] (%x xs r.xs)"
       
   107 
       
   108   set_of_list_def "set_of_list xs    == list_rec xs {} (%x l r. insert x r)"
       
   109 
       
   110   mem_def       "x mem xs            == 
       
   111                    list_rec xs False (%y ys r. if y=x then True else r)"
       
   112   map_def       "map f xs            == list_rec xs [] (%x l r. f(x)#r)"
       
   113   append_def    "xs@ys               == list_rec xs ys (%x l r. x#r)"
       
   114   filter_def    "filter P xs         == 
       
   115                   list_rec xs [] (%x xs r. if P(x) then x#r else r)"
       
   116 
       
   117   list_case_def  "list_case a f xs == list_rec xs a (%x xs r.f x xs)"
       
   118 
       
   119 end