equal
deleted
inserted
replaced
490 |
490 |
491 lemma abs_norm_cancel [simp]: |
491 lemma abs_norm_cancel [simp]: |
492 fixes a :: "'a::real_normed_vector" |
492 fixes a :: "'a::real_normed_vector" |
493 shows "\<bar>norm a\<bar> = norm a" |
493 shows "\<bar>norm a\<bar> = norm a" |
494 by (rule abs_of_nonneg [OF norm_ge_zero]) |
494 by (rule abs_of_nonneg [OF norm_ge_zero]) |
|
495 |
|
496 lemma norm_add_less: |
|
497 fixes x y :: "'a::real_normed_vector" |
|
498 shows "\<lbrakk>norm x < r; norm y < s\<rbrakk> \<Longrightarrow> norm (x + y) < r + s" |
|
499 by (rule order_le_less_trans [OF norm_triangle_ineq add_strict_mono]) |
|
500 |
|
501 lemma norm_mult_less: |
|
502 fixes x y :: "'a::real_normed_algebra" |
|
503 shows "\<lbrakk>norm x < r; norm y < s\<rbrakk> \<Longrightarrow> norm (x * y) < r * s" |
|
504 apply (rule order_le_less_trans [OF norm_mult_ineq]) |
|
505 apply (simp add: mult_strict_mono') |
|
506 done |
495 |
507 |
496 lemma norm_of_real [simp]: |
508 lemma norm_of_real [simp]: |
497 "norm (of_real r :: 'a::real_normed_algebra_1) = \<bar>r\<bar>" |
509 "norm (of_real r :: 'a::real_normed_algebra_1) = \<bar>r\<bar>" |
498 unfolding of_real_def by (simp add: norm_scaleR) |
510 unfolding of_real_def by (simp add: norm_scaleR) |
499 |
511 |