src/HOL/BNF_Comp.thy
changeset 58128 43a1ba26a8cb
parent 58127 b7cab82f488e
child 58129 3ec65a7f2b50
equal deleted inserted replaced
58127:b7cab82f488e 58128:43a1ba26a8cb
     1 (*  Title:      HOL/BNF_Comp.thy
       
     2     Author:     Dmitriy Traytel, TU Muenchen
       
     3     Author:     Jasmin Blanchette, TU Muenchen
       
     4     Copyright   2012, 2013, 2014
       
     5 
       
     6 Composition of bounded natural functors.
       
     7 *)
       
     8 
       
     9 header {* Composition of Bounded Natural Functors *}
       
    10 
       
    11 theory BNF_Comp
       
    12 imports BNF_Def
       
    13 begin
       
    14 
       
    15 lemma empty_natural: "(\<lambda>_. {}) o f = image g o (\<lambda>_. {})"
       
    16 by (rule ext) simp
       
    17 
       
    18 lemma Union_natural: "Union o image (image f) = image f o Union"
       
    19 by (rule ext) (auto simp only: comp_apply)
       
    20 
       
    21 lemma in_Union_o_assoc: "x \<in> (Union o gset o gmap) A \<Longrightarrow> x \<in> (Union o (gset o gmap)) A"
       
    22 by (unfold comp_assoc)
       
    23 
       
    24 lemma comp_single_set_bd:
       
    25   assumes fbd_Card_order: "Card_order fbd" and
       
    26     fset_bd: "\<And>x. |fset x| \<le>o fbd" and
       
    27     gset_bd: "\<And>x. |gset x| \<le>o gbd"
       
    28   shows "|\<Union>(fset ` gset x)| \<le>o gbd *c fbd"
       
    29 apply simp
       
    30 apply (rule ordLeq_transitive)
       
    31 apply (rule card_of_UNION_Sigma)
       
    32 apply (subst SIGMA_CSUM)
       
    33 apply (rule ordLeq_transitive)
       
    34 apply (rule card_of_Csum_Times')
       
    35 apply (rule fbd_Card_order)
       
    36 apply (rule ballI)
       
    37 apply (rule fset_bd)
       
    38 apply (rule ordLeq_transitive)
       
    39 apply (rule cprod_mono1)
       
    40 apply (rule gset_bd)
       
    41 apply (rule ordIso_imp_ordLeq)
       
    42 apply (rule ordIso_refl)
       
    43 apply (rule Card_order_cprod)
       
    44 done
       
    45 
       
    46 lemma csum_dup: "cinfinite r \<Longrightarrow> Card_order r \<Longrightarrow> p +c p' =o r +c r \<Longrightarrow> p +c p' =o r"
       
    47 apply (erule ordIso_transitive)
       
    48 apply (frule csum_absorb2')
       
    49 apply (erule ordLeq_refl)
       
    50 by simp
       
    51 
       
    52 lemma cprod_dup: "cinfinite r \<Longrightarrow> Card_order r \<Longrightarrow> p *c p' =o r *c r \<Longrightarrow> p *c p' =o r"
       
    53 apply (erule ordIso_transitive)
       
    54 apply (rule cprod_infinite)
       
    55 by simp
       
    56 
       
    57 lemma Union_image_insert: "\<Union>(f ` insert a B) = f a \<union> \<Union>(f ` B)"
       
    58 by simp
       
    59 
       
    60 lemma Union_image_empty: "A \<union> \<Union>(f ` {}) = A"
       
    61 by simp
       
    62 
       
    63 lemma image_o_collect: "collect ((\<lambda>f. image g o f) ` F) = image g o collect F"
       
    64 by (rule ext) (auto simp add: collect_def)
       
    65 
       
    66 lemma conj_subset_def: "A \<subseteq> {x. P x \<and> Q x} = (A \<subseteq> {x. P x} \<and> A \<subseteq> {x. Q x})"
       
    67 by blast
       
    68 
       
    69 lemma UN_image_subset: "\<Union>(f ` g x) \<subseteq> X = (g x \<subseteq> {x. f x \<subseteq> X})"
       
    70 by blast
       
    71 
       
    72 lemma comp_set_bd_Union_o_collect: "|\<Union>\<Union>((\<lambda>f. f x) ` X)| \<le>o hbd \<Longrightarrow> |(Union \<circ> collect X) x| \<le>o hbd"
       
    73 by (unfold comp_apply collect_def) simp
       
    74 
       
    75 lemma wpull_cong:
       
    76 "\<lbrakk>A' = A; B1' = B1; B2' = B2; wpull A B1 B2 f1 f2 p1 p2\<rbrakk> \<Longrightarrow> wpull A' B1' B2' f1 f2 p1 p2"
       
    77 by simp
       
    78 
       
    79 lemma Grp_fst_snd: "(Grp (Collect (split R)) fst)^--1 OO Grp (Collect (split R)) snd = R"
       
    80 unfolding Grp_def fun_eq_iff relcompp.simps by auto
       
    81 
       
    82 lemma OO_Grp_cong: "A = B \<Longrightarrow> (Grp A f)^--1 OO Grp A g = (Grp B f)^--1 OO Grp B g"
       
    83 by (rule arg_cong)
       
    84 
       
    85 lemma vimage2p_relcompp_mono: "R OO S \<le> T \<Longrightarrow>
       
    86   vimage2p f g R OO vimage2p g h S \<le> vimage2p f h T"
       
    87   unfolding vimage2p_def by auto
       
    88 
       
    89 lemma type_copy_map_cong0: "M (g x) = N (h x) \<Longrightarrow> (f o M o g) x = (f o N o h) x"
       
    90   by auto
       
    91 
       
    92 lemma type_copy_set_bd: "(\<And>y. |S y| \<le>o bd) \<Longrightarrow> |(S o Rep) x| \<le>o bd"
       
    93   by auto
       
    94 
       
    95 lemma vimage2p_cong: "R = S \<Longrightarrow> vimage2p f g R = vimage2p f g S"
       
    96   by simp
       
    97 
       
    98 context
       
    99 fixes Rep Abs
       
   100 assumes type_copy: "type_definition Rep Abs UNIV"
       
   101 begin
       
   102 
       
   103 lemma type_copy_map_id0: "M = id \<Longrightarrow> Abs o M o Rep = id"
       
   104   using type_definition.Rep_inverse[OF type_copy] by auto
       
   105 
       
   106 lemma type_copy_map_comp0: "M = M1 o M2 \<Longrightarrow> f o M o g = (f o M1 o Rep) o (Abs o M2 o g)"
       
   107   using type_definition.Abs_inverse[OF type_copy UNIV_I] by auto
       
   108 
       
   109 lemma type_copy_set_map0: "S o M = image f o S' \<Longrightarrow> (S o Rep) o (Abs o M o g) = image f o (S' o g)"
       
   110   using type_definition.Abs_inverse[OF type_copy UNIV_I] by (auto simp: o_def fun_eq_iff)
       
   111 
       
   112 lemma type_copy_wit: "x \<in> (S o Rep) (Abs y) \<Longrightarrow> x \<in> S y"
       
   113   using type_definition.Abs_inverse[OF type_copy UNIV_I] by auto
       
   114 
       
   115 lemma type_copy_vimage2p_Grp_Rep: "vimage2p f Rep (Grp (Collect P) h) =
       
   116     Grp (Collect (\<lambda>x. P (f x))) (Abs o h o f)"
       
   117   unfolding vimage2p_def Grp_def fun_eq_iff
       
   118   by (auto simp: type_definition.Abs_inverse[OF type_copy UNIV_I]
       
   119    type_definition.Rep_inverse[OF type_copy] dest: sym)
       
   120 
       
   121 lemma type_copy_vimage2p_Grp_Abs:
       
   122   "\<And>h. vimage2p g Abs (Grp (Collect P) h) = Grp (Collect (\<lambda>x. P (g x))) (Rep o h o g)"
       
   123   unfolding vimage2p_def Grp_def fun_eq_iff
       
   124   by (auto simp: type_definition.Abs_inverse[OF type_copy UNIV_I]
       
   125    type_definition.Rep_inverse[OF type_copy] dest: sym)
       
   126 
       
   127 lemma type_copy_ex_RepI: "(\<exists>b. F b) = (\<exists>b. F (Rep b))"
       
   128 proof safe
       
   129   fix b assume "F b"
       
   130   show "\<exists>b'. F (Rep b')"
       
   131   proof (rule exI)
       
   132     from `F b` show "F (Rep (Abs b))" using type_definition.Abs_inverse[OF type_copy] by auto
       
   133   qed
       
   134 qed blast
       
   135 
       
   136 lemma vimage2p_relcompp_converse:
       
   137   "vimage2p f g (R^--1 OO S) = (vimage2p Rep f R)^--1 OO vimage2p Rep g S"
       
   138   unfolding vimage2p_def relcompp.simps conversep.simps fun_eq_iff image_def
       
   139   by (auto simp: type_copy_ex_RepI)
       
   140 
       
   141 end
       
   142 
       
   143 bnf DEADID: 'a
       
   144   map: "id :: 'a \<Rightarrow> 'a"
       
   145   bd: natLeq
       
   146   rel: "op = :: 'a \<Rightarrow> 'a \<Rightarrow> bool"
       
   147 by (auto simp add: Grp_def natLeq_card_order natLeq_cinfinite)
       
   148 
       
   149 definition id_bnf_comp :: "'a \<Rightarrow> 'a" where "id_bnf_comp \<equiv> (\<lambda>x. x)"
       
   150 
       
   151 lemma id_bnf_comp_apply: "id_bnf_comp x = x"
       
   152   unfolding id_bnf_comp_def by simp
       
   153 
       
   154 bnf ID: 'a
       
   155   map: "id_bnf_comp :: ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b"
       
   156   sets: "\<lambda>x. {x}"
       
   157   bd: natLeq
       
   158   rel: "id_bnf_comp :: ('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool"
       
   159 unfolding id_bnf_comp_def
       
   160 apply (auto simp: Grp_def fun_eq_iff relcompp.simps natLeq_card_order natLeq_cinfinite)
       
   161 apply (rule ordLess_imp_ordLeq[OF finite_ordLess_infinite[OF _ natLeq_Well_order]])
       
   162 apply (auto simp add: Field_card_of Field_natLeq card_of_well_order_on)[3]
       
   163 done
       
   164 
       
   165 lemma type_definition_id_bnf_comp_UNIV: "type_definition id_bnf_comp id_bnf_comp UNIV"
       
   166   unfolding id_bnf_comp_def by unfold_locales auto
       
   167 
       
   168 ML_file "Tools/BNF/bnf_comp_tactics.ML"
       
   169 ML_file "Tools/BNF/bnf_comp.ML"
       
   170 
       
   171 hide_const (open) id_bnf_comp
       
   172 hide_fact (open) id_bnf_comp_def type_definition_id_bnf_comp_UNIV
       
   173 
       
   174 end