equal
deleted
inserted
replaced
378 |
378 |
379 |
379 |
380 (* new simplifications e.g. (y < x/n) = (y * n < x) are a real nuisance |
380 (* new simplifications e.g. (y < x/n) = (y * n < x) are a real nuisance |
381 they break the original proofs and make new proofs longer!*) |
381 they break the original proofs and make new proofs longer!*) |
382 lemma strad1: |
382 lemma strad1: |
383 "\<lbrakk>\<forall>xa::real. xa \<noteq> x \<and> \<bar>xa + - x\<bar> < s \<longrightarrow> |
383 "\<lbrakk>\<forall>xa::real. xa \<noteq> x \<and> \<bar>xa - x\<bar> < s \<longrightarrow> |
384 \<bar>(f xa - f x) / (xa - x) + - f' x\<bar> * 2 < e; |
384 \<bar>(f xa - f x) / (xa - x) - f' x\<bar> * 2 < e; |
385 0 < e; a \<le> x; x \<le> b; 0 < s\<rbrakk> |
385 0 < e; a \<le> x; x \<le> b; 0 < s\<rbrakk> |
386 \<Longrightarrow> \<forall>z. \<bar>z - x\<bar> < s -->\<bar>f z - f x - f' x * (z - x)\<bar> * 2 \<le> e * \<bar>z - x\<bar>" |
386 \<Longrightarrow> \<forall>z. \<bar>z - x\<bar> < s -->\<bar>f z - f x - f' x * (z - x)\<bar> * 2 \<le> e * \<bar>z - x\<bar>" |
387 apply auto |
387 apply auto |
388 apply (case_tac "0 < \<bar>z - x\<bar>") |
388 apply (case_tac "0 < \<bar>z - x\<bar>") |
389 prefer 2 apply (simp add: zero_less_abs_iff) |
389 prefer 2 apply (simp add: zero_less_abs_iff) |
425 apply (simp add: right_diff_distrib) |
425 apply (simp add: right_diff_distrib) |
426 apply (rule_tac t = "e* (v - u)" in real_sum_of_halves [THEN subst]) |
426 apply (rule_tac t = "e* (v - u)" in real_sum_of_halves [THEN subst]) |
427 apply (rule add_mono) |
427 apply (rule add_mono) |
428 apply (rule_tac y = "(e/2) * \<bar>v - x\<bar>" in order_trans) |
428 apply (rule_tac y = "(e/2) * \<bar>v - x\<bar>" in order_trans) |
429 prefer 2 apply simp |
429 prefer 2 apply simp |
430 apply (erule_tac [!] V= "\<forall>x'. x' ~= x & \<bar>x' + - x\<bar> < s --> ?P x'" in thin_rl) |
430 apply (erule_tac [!] V= "\<forall>x'. x' ~= x & \<bar>x' - x\<bar> < s --> ?P x'" in thin_rl) |
431 apply (drule_tac x = v in spec, simp add: times_divide_eq) |
431 apply (drule_tac x = v in spec, simp add: times_divide_eq) |
432 apply (drule_tac x = u in spec, auto) |
432 apply (drule_tac x = u in spec, auto) |
433 apply (subgoal_tac "\<bar>f u - f x - f' x * (u - x)\<bar> = \<bar>f x - f u - f' x * (x - u)\<bar>") |
433 apply (subgoal_tac "\<bar>f u - f x - f' x * (u - x)\<bar> = \<bar>f x - f u - f' x * (x - u)\<bar>") |
434 apply (rule order_trans) |
434 apply (rule order_trans) |
435 apply (auto simp add: abs_le_interval_iff) |
435 apply (auto simp add: abs_le_interval_iff) |
854 real_mult_less_iff1) |
854 real_mult_less_iff1) |
855 done |
855 done |
856 |
856 |
857 lemma Cauchy_iff2: |
857 lemma Cauchy_iff2: |
858 "Cauchy X = |
858 "Cauchy X = |
859 (\<forall>j. (\<exists>M. \<forall>m \<ge> M. \<forall>n \<ge> M. \<bar>X m + - X n\<bar> < inverse(real (Suc j))))" |
859 (\<forall>j. (\<exists>M. \<forall>m \<ge> M. \<forall>n \<ge> M. \<bar>X m - X n\<bar> < inverse(real (Suc j))))" |
860 apply (simp add: Cauchy_def, auto) |
860 apply (simp add: Cauchy_def, auto) |
861 apply (drule reals_Archimedean, safe) |
861 apply (drule reals_Archimedean, safe) |
862 apply (drule_tac x = n in spec, auto) |
862 apply (drule_tac x = n in spec, auto) |
863 apply (rule_tac x = M in exI, auto) |
863 apply (rule_tac x = M in exI, auto) |
864 apply (drule_tac x = m in spec, simp) |
864 apply (drule_tac x = m in spec, simp) |