equal
deleted
inserted
replaced
511 |
511 |
512 have int_eq: "\<And>i. integral UNIV (U i) = p i" using U_int by (rule integral_unique) |
512 have int_eq: "\<And>i. integral UNIV (U i) = p i" using U_int by (rule integral_unique) |
513 |
513 |
514 have *: "f integrable_on UNIV \<and> (\<lambda>k. integral UNIV (U k)) \<longlonglongrightarrow> integral UNIV f" |
514 have *: "f integrable_on UNIV \<and> (\<lambda>k. integral UNIV (U k)) \<longlonglongrightarrow> integral UNIV f" |
515 proof (rule monotone_convergence_increasing) |
515 proof (rule monotone_convergence_increasing) |
516 show "\<forall>k. U k integrable_on UNIV" using U_int by auto |
516 show "\<And>k. U k integrable_on UNIV" using U_int by auto |
517 show "\<forall>k. \<forall>x\<in>UNIV. U k x \<le> U (Suc k) x" using \<open>incseq U\<close> by (auto simp: incseq_def le_fun_def) |
517 show "\<And>k x. x\<in>UNIV \<Longrightarrow> U k x \<le> U (Suc k) x" using \<open>incseq U\<close> by (auto simp: incseq_def le_fun_def) |
518 then show "bounded {integral UNIV (U k) |k. True}" |
518 then show "bounded (range (\<lambda>k. integral UNIV (U k)))" |
519 using bnd int_eq by (auto simp: bounded_real intro!: exI[of _ r]) |
519 using bnd int_eq by (auto simp: bounded_real intro!: exI[of _ r]) |
520 show "\<forall>x\<in>UNIV. (\<lambda>k. U k x) \<longlonglongrightarrow> f x" |
520 show "\<And>x. x\<in>UNIV \<Longrightarrow> (\<lambda>k. U k x) \<longlonglongrightarrow> f x" |
521 using seq by auto |
521 using seq by auto |
522 qed |
522 qed |
523 moreover have "(\<lambda>i. (\<integral>\<^sup>+x. U i x \<partial>lborel)) \<longlonglongrightarrow> (\<integral>\<^sup>+x. f x \<partial>lborel)" |
523 moreover have "(\<lambda>i. (\<integral>\<^sup>+x. U i x \<partial>lborel)) \<longlonglongrightarrow> (\<integral>\<^sup>+x. f x \<partial>lborel)" |
524 using seq f(2) U_le_f by (intro nn_integral_dominated_convergence[where w=f]) auto |
524 using seq f(2) U_le_f by (intro nn_integral_dominated_convergence[where w=f]) auto |
525 ultimately have "integral UNIV f = r" |
525 ultimately have "integral UNIV f = r" |