src/HOL/OrderedGroup.thy
changeset 25090 4a50b958391a
parent 25077 c2ec5e589d78
child 25102 db3e412c4cb1
equal deleted inserted replaced
25089:04b8456f7754 25090:4a50b958391a
   672 
   672 
   673 
   673 
   674 subsection {* Lattice Ordered (Abelian) Groups *}
   674 subsection {* Lattice Ordered (Abelian) Groups *}
   675 
   675 
   676 class lordered_ab_group_meet = pordered_ab_group_add + lower_semilattice
   676 class lordered_ab_group_meet = pordered_ab_group_add + lower_semilattice
   677 
   677 begin
   678 class lordered_ab_group_join = pordered_ab_group_add + upper_semilattice
   678 
   679 
   679 lemma add_inf_distrib_left:
   680 class lordered_ab_group = pordered_ab_group_add + lattice
   680   "a + inf b c = inf (a + b) (a + c)"
   681 
   681 apply (rule antisym)
   682 instance lordered_ab_group \<subseteq> lordered_ab_group_meet by default
       
   683 instance lordered_ab_group \<subseteq> lordered_ab_group_join by default
       
   684 
       
   685 lemma add_inf_distrib_left: "a + inf b c = inf (a + b) (a + (c::'a::{pordered_ab_group_add, lower_semilattice}))"
       
   686 apply (rule order_antisym)
       
   687 apply (simp_all add: le_infI)
   682 apply (simp_all add: le_infI)
   688 apply (rule add_le_imp_le_left [of "-a"])
   683 apply (rule add_le_imp_le_left [of "uminus a"])
   689 apply (simp only: add_assoc[symmetric], simp)
   684 apply (simp only: add_assoc [symmetric], simp)
   690 apply rule
   685 apply rule
   691 apply (rule add_le_imp_le_left[of "a"], simp only: add_assoc[symmetric], simp)+
   686 apply (rule add_le_imp_le_left[of "a"], simp only: add_assoc[symmetric], simp)+
   692 done
   687 done
   693 
   688 
   694 lemma add_sup_distrib_left: "a + sup b c = sup (a + b) (a+ (c::'a::{pordered_ab_group_add, upper_semilattice}))" 
   689 lemma add_inf_distrib_right:
   695 apply (rule order_antisym)
   690   "inf a b + c = inf (a + c) (b + c)"
   696 apply (rule add_le_imp_le_left [of "-a"])
   691 proof -
       
   692   have "c + inf a b = inf (c+a) (c+b)" by (simp add: add_inf_distrib_left)
       
   693   thus ?thesis by (simp add: add_commute)
       
   694 qed
       
   695 
       
   696 end
       
   697 
       
   698 class lordered_ab_group_join = pordered_ab_group_add + upper_semilattice
       
   699 begin
       
   700 
       
   701 lemma add_sup_distrib_left:
       
   702   "a + sup b c = sup (a + b) (a + c)" 
       
   703 apply (rule antisym)
       
   704 apply (rule add_le_imp_le_left [of "uminus a"])
   697 apply (simp only: add_assoc[symmetric], simp)
   705 apply (simp only: add_assoc[symmetric], simp)
   698 apply rule
   706 apply rule
   699 apply (rule add_le_imp_le_left [of "a"], simp only: add_assoc[symmetric], simp)+
   707 apply (rule add_le_imp_le_left [of "a"], simp only: add_assoc[symmetric], simp)+
   700 apply (rule le_supI)
   708 apply (rule le_supI)
   701 apply (simp_all)
   709 apply (simp_all)
   702 done
   710 done
   703 
   711 
   704 lemma add_inf_distrib_right: "inf a b + (c::'a::lordered_ab_group) = inf (a+c) (b+c)"
   712 lemma add_sup_distrib_right:
   705 proof -
   713   "sup a b + c = sup (a+c) (b+c)"
   706   have "c + inf a b = inf (c+a) (c+b)" by (simp add: add_inf_distrib_left)
       
   707   thus ?thesis by (simp add: add_commute)
       
   708 qed
       
   709 
       
   710 lemma add_sup_distrib_right: "sup a b + (c::'a::lordered_ab_group) = sup (a+c) (b+c)"
       
   711 proof -
   714 proof -
   712   have "c + sup a b = sup (c+a) (c+b)" by (simp add: add_sup_distrib_left)
   715   have "c + sup a b = sup (c+a) (c+b)" by (simp add: add_sup_distrib_left)
   713   thus ?thesis by (simp add: add_commute)
   716   thus ?thesis by (simp add: add_commute)
   714 qed
   717 qed
   715 
   718 
       
   719 end
       
   720 
       
   721 class lordered_ab_group = pordered_ab_group_add + lattice
       
   722 begin
       
   723 
       
   724 subclass lordered_ab_group_meet by unfold_locales
       
   725 subclass lordered_ab_group_join by unfold_locales
       
   726 
       
   727 end
       
   728 
       
   729 context lordered_ab_group
       
   730 begin
       
   731 
   716 lemmas add_sup_inf_distribs = add_inf_distrib_right add_inf_distrib_left add_sup_distrib_right add_sup_distrib_left
   732 lemmas add_sup_inf_distribs = add_inf_distrib_right add_inf_distrib_left add_sup_distrib_right add_sup_distrib_left
   717 
   733 
   718 lemma inf_eq_neg_sup: "inf a (b\<Colon>'a\<Colon>lordered_ab_group) = - sup (-a) (-b)"
   734 lemma inf_eq_neg_sup: "inf a b = - sup (-a) (-b)"
   719 proof (rule inf_unique)
   735 proof (rule inf_unique)
   720   fix a b :: 'a
   736   fix a b :: 'a
   721   show "- sup (-a) (-b) \<le> a" by (rule add_le_imp_le_right [of _ "sup (-a) (-b)"])
   737   show "- sup (-a) (-b) \<le> a"
   722     (simp, simp add: add_sup_distrib_left)
   738     by (rule add_le_imp_le_right [of _ "sup (uminus a) (uminus b)"])
       
   739       (simp, simp add: add_sup_distrib_left)
   723 next
   740 next
   724   fix a b :: 'a
   741   fix a b :: 'a
   725   show "- sup (-a) (-b) \<le> b" by (rule add_le_imp_le_right [of _ "sup (-a) (-b)"])
   742   show "- sup (-a) (-b) \<le> b"
   726     (simp, simp add: add_sup_distrib_left)
   743     by (rule add_le_imp_le_right [of _ "sup (uminus a) (uminus b)"])
       
   744       (simp, simp add: add_sup_distrib_left)
   727 next
   745 next
   728   fix a b c :: 'a
   746   fix a b c :: 'a
   729   assume "a \<le> b" "a \<le> c"
   747   assume "a \<le> b" "a \<le> c"
   730   then show "a \<le> - sup (-b) (-c)" by (subst neg_le_iff_le [symmetric])
   748   then show "a \<le> - sup (-b) (-c)" by (subst neg_le_iff_le [symmetric])
   731     (simp add: le_supI)
   749     (simp add: le_supI)
   732 qed
   750 qed
   733   
   751   
   734 lemma sup_eq_neg_inf: "sup a (b\<Colon>'a\<Colon>lordered_ab_group) = - inf (-a) (-b)"
   752 lemma sup_eq_neg_inf: "sup a b = - inf (-a) (-b)"
   735 proof (rule sup_unique)
   753 proof (rule sup_unique)
   736   fix a b :: 'a
   754   fix a b :: 'a
   737   show "a \<le> - inf (-a) (-b)" by (rule add_le_imp_le_right [of _ "inf (-a) (-b)"])
   755   show "a \<le> - inf (-a) (-b)"
   738     (simp, simp add: add_inf_distrib_left)
   756     by (rule add_le_imp_le_right [of _ "inf (uminus a) (uminus b)"])
       
   757       (simp, simp add: add_inf_distrib_left)
   739 next
   758 next
   740   fix a b :: 'a
   759   fix a b :: 'a
   741   show "b \<le> - inf (-a) (-b)" by (rule add_le_imp_le_right [of _ "inf (-a) (-b)"])
   760   show "b \<le> - inf (-a) (-b)"
   742     (simp, simp add: add_inf_distrib_left)
   761     by (rule add_le_imp_le_right [of _ "inf (uminus a) (uminus b)"])
       
   762       (simp, simp add: add_inf_distrib_left)
   743 next
   763 next
   744   fix a b c :: 'a
   764   fix a b c :: 'a
   745   assume "a \<le> c" "b \<le> c"
   765   assume "a \<le> c" "b \<le> c"
   746   then show "- inf (-a) (-b) \<le> c" by (subst neg_le_iff_le [symmetric])
   766   then show "- inf (-a) (-b) \<le> c" by (subst neg_le_iff_le [symmetric])
   747     (simp add: le_infI)
   767     (simp add: le_infI)
   748 qed
   768 qed
   749 
   769 
   750 lemma add_eq_inf_sup: "a + b = sup a b + inf a (b\<Colon>'a\<Colon>lordered_ab_group)"
   770 lemma add_eq_inf_sup: "a + b = sup a b + inf a b"
   751 proof -
   771 proof -
   752   have "0 = - inf 0 (a-b) + inf (a-b) 0" by (simp add: inf_commute)
   772   have "0 = - inf 0 (a-b) + inf (a-b) 0" by (simp add: inf_commute)
   753   hence "0 = sup 0 (b-a) + inf (a-b) 0" by (simp add: inf_eq_neg_sup)
   773   hence "0 = sup 0 (b-a) + inf (a-b) 0" by (simp add: inf_eq_neg_sup)
   754   hence "0 = (-a + sup a b) + (inf a b + (-b))"
   774   hence "0 = (-a + sup a b) + (inf a b + (-b))"
   755     apply (simp add: add_sup_distrib_left add_inf_distrib_right)
   775     apply (simp add: add_sup_distrib_left add_inf_distrib_right)
   756     by (simp add: diff_minus add_commute)
   776     by (simp add: diff_minus add_commute)
   757   thus ?thesis
   777   thus ?thesis
   758     apply (simp add: compare_rls)
   778     apply (simp add: compare_rls)
   759     apply (subst add_left_cancel[symmetric, of "a+b" "sup a b + inf a b" "-a"])
   779     apply (subst add_left_cancel [symmetric, of "plus a b" "plus (sup a b) (inf a b)" "uminus a"])
   760     apply (simp only: add_assoc, simp add: add_assoc[symmetric])
   780     apply (simp only: add_assoc, simp add: add_assoc[symmetric])
   761     done
   781     done
   762 qed
   782 qed
   763 
   783 
   764 subsection {* Positive Part, Negative Part, Absolute Value *}
   784 subsection {* Positive Part, Negative Part, Absolute Value *}
   765 
   785 
   766 definition
   786 definition
   767   nprt :: "'a \<Rightarrow> ('a::lordered_ab_group)" where
   787   nprt :: "'a \<Rightarrow> 'a" where
   768   "nprt x = inf x 0"
   788   "nprt x = inf x 0"
   769 
   789 
   770 definition
   790 definition
   771   pprt :: "'a \<Rightarrow> ('a::lordered_ab_group)" where
   791   pprt :: "'a \<Rightarrow> 'a" where
   772   "pprt x = sup x 0"
   792   "pprt x = sup x 0"
   773 
   793 
   774 lemma prts: "a = pprt a + nprt a"
   794 lemma prts: "a = pprt a + nprt a"
   775 by (simp add: pprt_def nprt_def add_eq_inf_sup[symmetric])
   795   by (simp add: pprt_def nprt_def add_eq_inf_sup[symmetric])
   776 
   796 
   777 lemma zero_le_pprt[simp]: "0 \<le> pprt a"
   797 lemma zero_le_pprt[simp]: "0 \<le> pprt a"
   778 by (simp add: pprt_def)
   798   by (simp add: pprt_def)
   779 
   799 
   780 lemma nprt_le_zero[simp]: "nprt a \<le> 0"
   800 lemma nprt_le_zero[simp]: "nprt a \<le> 0"
   781 by (simp add: nprt_def)
   801   by (simp add: nprt_def)
   782 
   802 
   783 lemma le_eq_neg: "(a \<le> -b) = (a + b \<le> (0::_::lordered_ab_group))" (is "?l = ?r")
   803 lemma le_eq_neg: "a \<le> - b \<longleftrightarrow> a + b \<le> 0" (is "?l = ?r")
   784 proof -
   804 proof -
   785   have a: "?l \<longrightarrow> ?r"
   805   have a: "?l \<longrightarrow> ?r"
   786     apply (auto)
   806     apply (auto)
   787     apply (rule add_le_imp_le_right[of _ "-b" _])
   807     apply (rule add_le_imp_le_right[of _ "uminus b" _])
   788     apply (simp add: add_assoc)
   808     apply (simp add: add_assoc)
   789     done
   809     done
   790   have b: "?r \<longrightarrow> ?l"
   810   have b: "?r \<longrightarrow> ?l"
   791     apply (auto)
   811     apply (auto)
   792     apply (rule add_le_imp_le_right[of _ "b" _])
   812     apply (rule add_le_imp_le_right[of _ "b" _])
   796 qed
   816 qed
   797 
   817 
   798 lemma pprt_0[simp]: "pprt 0 = 0" by (simp add: pprt_def)
   818 lemma pprt_0[simp]: "pprt 0 = 0" by (simp add: pprt_def)
   799 lemma nprt_0[simp]: "nprt 0 = 0" by (simp add: nprt_def)
   819 lemma nprt_0[simp]: "nprt 0 = 0" by (simp add: nprt_def)
   800 
   820 
   801 lemma pprt_eq_id[simp,noatp]: "0 <= x \<Longrightarrow> pprt x = x"
   821 lemma pprt_eq_id [simp, noatp]: "0 \<le> x \<Longrightarrow> pprt x = x"
   802   by (simp add: pprt_def le_iff_sup sup_aci)
   822   by (simp add: pprt_def le_iff_sup sup_ACI)
   803 
   823 
   804 lemma nprt_eq_id[simp,noatp]: "x <= 0 \<Longrightarrow> nprt x = x"
   824 lemma nprt_eq_id [simp, noatp]: "x \<le> 0 \<Longrightarrow> nprt x = x"
   805   by (simp add: nprt_def le_iff_inf inf_aci)
   825   by (simp add: nprt_def le_iff_inf inf_ACI)
   806 
   826 
   807 lemma pprt_eq_0[simp,noatp]: "x <= 0 \<Longrightarrow> pprt x = 0"
   827 lemma pprt_eq_0 [simp, noatp]: "x \<le> 0 \<Longrightarrow> pprt x = 0"
   808   by (simp add: pprt_def le_iff_sup sup_aci)
   828   by (simp add: pprt_def le_iff_sup sup_ACI)
   809 
   829 
   810 lemma nprt_eq_0[simp,noatp]: "0 <= x \<Longrightarrow> nprt x = 0"
   830 lemma nprt_eq_0 [simp, noatp]: "0 \<le> x \<Longrightarrow> nprt x = 0"
   811   by (simp add: nprt_def le_iff_inf inf_aci)
   831   by (simp add: nprt_def le_iff_inf inf_ACI)
   812 
   832 
   813 lemma sup_0_imp_0: "sup a (-a) = 0 \<Longrightarrow> a = (0::'a::lordered_ab_group)"
   833 lemma sup_0_imp_0: "sup a (- a) = 0 \<Longrightarrow> a = 0"
   814 proof -
   834 proof -
   815   {
   835   {
   816     fix a::'a
   836     fix a::'a
   817     assume hyp: "sup a (-a) = 0"
   837     assume hyp: "sup a (-a) = 0"
   818     hence "sup a (-a) + a = a" by (simp)
   838     hence "sup a (-a) + a = a" by (simp)
   824   assume hyp:"sup a (-a) = 0"
   844   assume hyp:"sup a (-a) = 0"
   825   hence hyp2:"sup (-a) (-(-a)) = 0" by (simp add: sup_commute)
   845   hence hyp2:"sup (-a) (-(-a)) = 0" by (simp add: sup_commute)
   826   from p[OF hyp] p[OF hyp2] show "a = 0" by simp
   846   from p[OF hyp] p[OF hyp2] show "a = 0" by simp
   827 qed
   847 qed
   828 
   848 
   829 lemma inf_0_imp_0: "inf a (-a) = 0 \<Longrightarrow> a = (0::'a::lordered_ab_group)"
   849 lemma inf_0_imp_0: "inf a (-a) = 0 \<Longrightarrow> a = 0"
   830 apply (simp add: inf_eq_neg_sup)
   850 apply (simp add: inf_eq_neg_sup)
   831 apply (simp add: sup_commute)
   851 apply (simp add: sup_commute)
   832 apply (erule sup_0_imp_0)
   852 apply (erule sup_0_imp_0)
   833 done
   853 done
   834 
   854 
   835 lemma inf_0_eq_0[simp,noatp]: "(inf a (-a) = 0) = (a = (0::'a::lordered_ab_group))"
   855 lemma inf_0_eq_0 [simp, noatp]: "inf a (- a) = 0 \<longleftrightarrow> a = 0"
   836 by (auto, erule inf_0_imp_0)
   856   by (rule, erule inf_0_imp_0) simp
   837 
   857 
   838 lemma sup_0_eq_0[simp,noatp]: "(sup a (-a) = 0) = (a = (0::'a::lordered_ab_group))"
   858 lemma sup_0_eq_0 [simp, noatp]: "sup a (- a) = 0 \<longleftrightarrow> a = 0"
   839 by (auto, erule sup_0_imp_0)
   859   by (rule, erule sup_0_imp_0) simp
   840 
   860 
   841 lemma zero_le_double_add_iff_zero_le_single_add[simp]: "(0 \<le> a + a) = (0 \<le> (a::'a::lordered_ab_group))"
   861 lemma zero_le_double_add_iff_zero_le_single_add [simp]:
       
   862   "0 \<le> a + a \<longleftrightarrow> 0 \<le> a"
   842 proof
   863 proof
   843   assume "0 <= a + a"
   864   assume "0 <= a + a"
   844   hence a:"inf (a+a) 0 = 0" by (simp add: le_iff_inf inf_commute)
   865   hence a:"inf (a+a) 0 = 0" by (simp add: le_iff_inf inf_commute)
   845   have "(inf a 0)+(inf a 0) = inf (inf (a+a) 0) a" (is "?l=_") by (simp add: add_sup_inf_distribs inf_aci)
   866   have "(inf a 0)+(inf a 0) = inf (inf (a+a) 0) a" (is "?l=_")
       
   867     by (simp add: add_sup_inf_distribs inf_ACI)
   846   hence "?l = 0 + inf a 0" by (simp add: a, simp add: inf_commute)
   868   hence "?l = 0 + inf a 0" by (simp add: a, simp add: inf_commute)
   847   hence "inf a 0 = 0" by (simp only: add_right_cancel)
   869   hence "inf a 0 = 0" by (simp only: add_right_cancel)
   848   then show "0 <= a" by (simp add: le_iff_inf inf_commute)    
   870   then show "0 <= a" by (simp add: le_iff_inf inf_commute)    
   849 next  
   871 next  
   850   assume a: "0 <= a"
   872   assume a: "0 <= a"
   851   show "0 <= a + a" by (simp add: add_mono[OF a a, simplified])
   873   show "0 <= a + a" by (simp add: add_mono[OF a a, simplified])
   852 qed
   874 qed
   853 
   875 
   854 lemma double_add_le_zero_iff_single_add_le_zero[simp]: "(a + a <= 0) = ((a::'a::lordered_ab_group) <= 0)" 
   876 lemma double_zero: "a + a = 0 \<longleftrightarrow> a = 0"
   855 proof -
   877 proof
   856   have "(a + a <= 0) = (0 <= -(a+a))" by (subst le_minus_iff, simp)
   878   assume assm: "a + a = 0"
   857   moreover have "\<dots> = (a <= 0)" by (simp add: zero_le_double_add_iff_zero_le_single_add)
   879   then have "a + a + - a = - a" by simp
       
   880   then have "a + (a + - a) = - a" by (simp only: add_assoc)
       
   881   then have a: "- a = a" by simp (*FIXME tune proof*)
       
   882   show "a = 0" apply rule
       
   883   apply (unfold neg_le_iff_le [symmetric, of a])
       
   884   unfolding a apply simp
       
   885   unfolding zero_le_double_add_iff_zero_le_single_add [symmetric, of a]
       
   886   unfolding assm unfolding le_less apply simp_all done
       
   887 next
       
   888   assume "a = 0" then show "a + a = 0" by simp
       
   889 qed
       
   890 
       
   891 lemma zero_less_double_add_iff_zero_less_single_add:
       
   892   "0 < a + a \<longleftrightarrow> 0 < a"
       
   893 proof (cases "a = 0")
       
   894   case True then show ?thesis by auto
       
   895 next
       
   896   case False then show ?thesis (*FIXME tune proof*)
       
   897   unfolding less_le apply simp apply rule
       
   898   apply clarify
       
   899   apply rule
       
   900   apply assumption
       
   901   apply (rule notI)
       
   902   unfolding double_zero [symmetric, of a] apply simp
       
   903   done
       
   904 qed
       
   905 
       
   906 lemma double_add_le_zero_iff_single_add_le_zero [simp]:
       
   907   "a + a \<le> 0 \<longleftrightarrow> a \<le> 0" 
       
   908 proof -
       
   909   have "a + a \<le> 0 \<longleftrightarrow> 0 \<le> - (a + a)" by (subst le_minus_iff, simp)
       
   910   moreover have "\<dots> \<longleftrightarrow> a \<le> 0" by (simp add: zero_le_double_add_iff_zero_le_single_add)
   858   ultimately show ?thesis by blast
   911   ultimately show ?thesis by blast
   859 qed
   912 qed
   860 
   913 
   861 lemma double_add_less_zero_iff_single_less_zero[simp]: "(a+a<0) = ((a::'a::{pordered_ab_group_add,linorder}) < 0)" (is ?s)
   914 lemma double_add_less_zero_iff_single_less_zero [simp]:
   862 proof cases
   915   "a + a < 0 \<longleftrightarrow> a < 0"
   863   assume a: "a < 0"
   916 proof -
   864   thus ?s by (simp add:  add_strict_mono[OF a a, simplified])
   917   have "a + a < 0 \<longleftrightarrow> 0 < - (a + a)" by (subst less_minus_iff, simp)
   865 next
   918   moreover have "\<dots> \<longleftrightarrow> a < 0" by (simp add: zero_less_double_add_iff_zero_less_single_add)
   866   assume "~(a < 0)" 
   919   ultimately show ?thesis by blast
   867   hence a:"0 <= a" by (simp)
   920 qed
   868   hence "0 <= a+a" by (simp add: add_mono[OF a a, simplified])
   921 
   869   hence "~(a+a < 0)" by simp
   922 end
   870   with a show ?thesis by simp 
   923 
   871 qed
   924 lemmas add_sup_inf_distribs = add_inf_distrib_right add_inf_distrib_left add_sup_distrib_right add_sup_distrib_left
   872 
   925 
   873 class lordered_ab_group_abs = lordered_ab_group + abs +
   926 class lordered_ab_group_abs = lordered_ab_group + abs +
   874   assumes abs_lattice: "abs x = sup x (uminus x)"
   927   assumes abs_lattice: "\<bar>x\<bar> = sup x (- x)"
   875 
   928 begin
   876 lemma abs_zero[simp]: "abs 0 = (0::'a::lordered_ab_group_abs)"
   929 
   877 by (simp add: abs_lattice)
   930 lemma abs_zero [simp]: "\<bar>0\<bar> = 0"
   878 
   931   by (simp add: abs_lattice)
   879 lemma abs_eq_0[simp]: "(abs a = 0) = (a = (0::'a::lordered_ab_group_abs))"
   932 
   880 by (simp add: abs_lattice)
   933 lemma abs_eq_0 [simp]: "\<bar>a\<bar> = 0 \<longleftrightarrow> a = 0"
   881 
   934   by (simp add: abs_lattice)
   882 lemma abs_0_eq[simp]: "(0 = abs a) = (a = (0::'a::lordered_ab_group_abs))"
   935 
       
   936 lemma abs_0_eq [simp, noatp]: "0 = \<bar>a\<bar> \<longleftrightarrow> a = 0"
   883 proof -
   937 proof -
   884   have "(0 = abs a) = (abs a = 0)" by (simp only: eq_ac)
   938   have "(0 = abs a) = (abs a = 0)" by (simp only: eq_ac)
   885   thus ?thesis by simp
   939   thus ?thesis by simp
   886 qed
   940 qed
   887 
   941 
   888 declare abs_0_eq [noatp] (*essentially the same as the other one*)
   942 lemma neg_inf_eq_sup [simp]: "- inf a b = sup (-a) (-b)"
   889 
   943   by (simp add: inf_eq_neg_sup)
   890 lemma neg_inf_eq_sup[simp]: "- inf a (b::_::lordered_ab_group) = sup (-a) (-b)"
   944 
   891 by (simp add: inf_eq_neg_sup)
   945 lemma neg_sup_eq_inf [simp]: "- sup a b = inf (-a) (-b)"
   892 
   946   by (simp del: neg_inf_eq_sup add: sup_eq_neg_inf)
   893 lemma neg_sup_eq_inf[simp]: "- sup a (b::_::lordered_ab_group) = inf (-a) (-b)"
   947 
   894 by (simp del: neg_inf_eq_sup add: sup_eq_neg_inf)
   948 lemma abs_ge_zero [simp]: "0 \<le> \<bar>a\<bar>"
   895 
   949 proof -
   896 lemma sup_eq_if: "sup a (-a) = (if a < 0 then -a else (a::'a::{lordered_ab_group, linorder}))"
   950   have a: "a \<le> \<bar>a\<bar>" and b: "- a \<le> \<bar>a\<bar>" by (auto simp add: abs_lattice)
   897 proof -
   951   show ?thesis by (rule add_mono [OF a b, simplified])
   898   note b = add_le_cancel_right[of a a "-a",symmetric,simplified]
       
   899   have c: "a + a = 0 \<Longrightarrow> -a = a" by (rule add_right_imp_eq[of _ a], simp)
       
   900   show ?thesis by (auto simp add: max_def b linorder_not_less sup_max)
       
   901 qed
       
   902 
       
   903 lemma abs_if_lattice: "\<bar>a\<bar> = (if a < 0 then -a else (a::'a::{lordered_ab_group_abs, linorder}))"
       
   904 proof -
       
   905   show ?thesis by (simp add: abs_lattice sup_eq_if)
       
   906 qed
       
   907 
       
   908 lemma abs_ge_zero[simp]: "0 \<le> abs (a::'a::lordered_ab_group_abs)"
       
   909 proof -
       
   910   have a:"a <= abs a" and b:"-a <= abs a" by (auto simp add: abs_lattice)
       
   911   show ?thesis by (rule add_mono[OF a b, simplified])
       
   912 qed
   952 qed
   913   
   953   
   914 lemma abs_le_zero_iff [simp]: "(abs a \<le> (0::'a::lordered_ab_group_abs)) = (a = 0)" 
   954 lemma abs_le_zero_iff [simp]: "\<bar>a\<bar> \<le> 0 \<longleftrightarrow> a = 0" 
   915 proof
   955 proof
   916   assume "abs a <= 0"
   956   assume "\<bar>a\<bar> \<le> 0"
   917   hence "abs a = 0" by (auto dest: order_antisym)
   957   then have "\<bar>a\<bar> = 0" by (rule antisym) simp
   918   thus "a = 0" by simp
   958   thus "a = 0" by simp
   919 next
   959 next
   920   assume "a = 0"
   960   assume "a = 0"
   921   thus "abs a <= 0" by simp
   961   thus "\<bar>a\<bar> \<le> 0" by simp
   922 qed
   962 qed
   923 
   963 
   924 lemma zero_less_abs_iff [simp]: "(0 < abs a) = (a \<noteq> (0::'a::lordered_ab_group_abs))"
   964 lemma zero_less_abs_iff [simp]: "0 < \<bar>a\<bar> \<longleftrightarrow> a \<noteq> 0"
   925 by (simp add: order_less_le)
   965   by (simp add: less_le)
   926 
   966 
   927 lemma abs_not_less_zero [simp]: "~ abs a < (0::'a::lordered_ab_group_abs)"
   967 lemma abs_not_less_zero [simp]: "\<not> \<bar>a\<bar> < 0"
   928 proof -
   968 proof -
   929   have a:"!! x (y::_::order). x <= y \<Longrightarrow> ~(y < x)" by auto
   969   have a: "\<And>x y. x \<le> y \<Longrightarrow> \<not> y < x" by auto
   930   show ?thesis by (simp add: a)
   970   show ?thesis by (simp add: a)
   931 qed
   971 qed
   932 
   972 
   933 lemma abs_ge_self: "a \<le> abs (a::'a::lordered_ab_group_abs)"
   973 lemma abs_ge_self: "a \<le> \<bar>a\<bar>"
   934 by (simp add: abs_lattice)
   974   by (auto simp add: abs_lattice)
   935 
   975 
   936 lemma abs_ge_minus_self: "-a \<le> abs (a::'a::lordered_ab_group_abs)"
   976 lemma abs_ge_minus_self: "- a \<le> \<bar>a\<bar>"
   937 by (simp add: abs_lattice)
   977   by (auto simp add: abs_lattice)
   938 
   978 
   939 lemma abs_prts: "abs (a::_::lordered_ab_group_abs) = pprt a - nprt a"
   979 lemma abs_minus_cancel [simp]: "\<bar>-a\<bar> = \<bar>a\<bar>"
   940 apply (simp add: pprt_def nprt_def diff_minus)
   980   by (simp add: abs_lattice sup_commute)
   941 apply (simp add: add_sup_inf_distribs sup_aci abs_lattice[symmetric])
   981 
   942 apply (subst sup_absorb2, auto)
   982 lemma abs_idempotent [simp]: "\<bar>\<bar>a\<bar>\<bar> = \<bar>a\<bar>"
   943 done
   983 apply (simp add: abs_lattice [of "abs a"])
   944 
       
   945 lemma abs_minus_cancel [simp]: "abs (-a) = abs(a::'a::lordered_ab_group_abs)"
       
   946 by (simp add: abs_lattice sup_commute)
       
   947 
       
   948 lemma abs_idempotent [simp]: "abs (abs a) = abs (a::'a::lordered_ab_group_abs)"
       
   949 apply (simp add: abs_lattice[of "abs a"])
       
   950 apply (subst sup_absorb1)
   984 apply (subst sup_absorb1)
   951 apply (rule order_trans[of _ 0])
   985 apply (rule order_trans [of _ zero])
   952 by auto
   986 by auto
   953 
   987 
   954 lemma abs_minus_commute: 
   988 lemma abs_minus_commute: 
   955   fixes a :: "'a::lordered_ab_group_abs"
   989   "\<bar>a - b\<bar> = \<bar>b - a\<bar>"
   956   shows "abs (a-b) = abs(b-a)"
   990 proof -
   957 proof -
   991   have "\<bar>a - b\<bar> = \<bar>- (a - b)\<bar>" by (simp only: abs_minus_cancel)
   958   have "abs (a-b) = abs (- (a-b))" by (simp only: abs_minus_cancel)
   992   also have "... = \<bar>b - a\<bar>" by simp
   959   also have "... = abs(b-a)" by simp
       
   960   finally show ?thesis .
   993   finally show ?thesis .
   961 qed
   994 qed
   962 
   995 
   963 lemma zero_le_iff_zero_nprt: "(0 \<le> a) = (nprt a = 0)"
   996 lemma abs_prts: "\<bar>a\<bar> = pprt a - nprt a"
       
   997 proof -
       
   998   have "0 \<le> \<bar>a\<bar>" by simp
       
   999   then have "0 \<le> sup a (- a)" unfolding abs_lattice .
       
  1000   then have "sup (sup a (- a)) 0 = sup a (- a)" by (rule sup_absorb1)
       
  1001   then show ?thesis
       
  1002     by (simp add: add_sup_inf_distribs sup_ACI
       
  1003       pprt_def nprt_def diff_minus abs_lattice)
       
  1004 qed
       
  1005   
       
  1006 lemma zero_le_iff_zero_nprt: "0 \<le> a \<longleftrightarrow> nprt a = 0"
       
  1007   by (simp add: le_iff_inf nprt_def inf_commute)
       
  1008 
       
  1009 lemma le_zero_iff_zero_pprt: "a \<le> 0 \<longleftrightarrow> pprt a = 0"
       
  1010   by (simp add: le_iff_sup pprt_def sup_commute)
       
  1011 
       
  1012 lemma le_zero_iff_pprt_id: "0 \<le> a \<longleftrightarrow> pprt a = a"
       
  1013   by (simp add: le_iff_sup pprt_def sup_commute)
       
  1014 
       
  1015 lemma zero_le_iff_nprt_id: "a \<le> 0 \<longleftrightarrow> nprt a = a"
   964 by (simp add: le_iff_inf nprt_def inf_commute)
  1016 by (simp add: le_iff_inf nprt_def inf_commute)
   965 
  1017 
   966 lemma le_zero_iff_zero_pprt: "(a \<le> 0) = (pprt a = 0)"
  1018 lemma pprt_mono [simp, noatp]: "a \<le> b \<Longrightarrow> pprt a \<le> pprt b"
   967 by (simp add: le_iff_sup pprt_def sup_commute)
  1019   by (simp add: le_iff_sup pprt_def sup_ACI sup_assoc [symmetric, of a])
   968 
  1020 
   969 lemma le_zero_iff_pprt_id: "(0 \<le> a) = (pprt a = a)"
  1021 lemma nprt_mono [simp, noatp]: "a \<le> b \<Longrightarrow> nprt a \<le> nprt b"
   970 by (simp add: le_iff_sup pprt_def sup_commute)
  1022   by (simp add: le_iff_inf nprt_def inf_ACI inf_assoc [symmetric, of a])
   971 
  1023 
   972 lemma zero_le_iff_nprt_id: "(a \<le> 0) = (nprt a = a)"
  1024 lemma pprt_neg: "pprt (- x) = - nprt x"
   973 by (simp add: le_iff_inf nprt_def inf_commute)
       
   974 
       
   975 lemma pprt_mono[simp,noatp]: "(a::_::lordered_ab_group) <= b \<Longrightarrow> pprt a <= pprt b"
       
   976   by (simp add: le_iff_sup pprt_def sup_aci)
       
   977 
       
   978 lemma nprt_mono[simp,noatp]: "(a::_::lordered_ab_group) <= b \<Longrightarrow> nprt a <= nprt b"
       
   979   by (simp add: le_iff_inf nprt_def inf_aci)
       
   980 
       
   981 lemma pprt_neg: "pprt (-x) = - nprt x"
       
   982   by (simp add: pprt_def nprt_def)
  1025   by (simp add: pprt_def nprt_def)
   983 
  1026 
   984 lemma nprt_neg: "nprt (-x) = - pprt x"
  1027 lemma nprt_neg: "nprt (- x) = - pprt x"
   985   by (simp add: pprt_def nprt_def)
  1028   by (simp add: pprt_def nprt_def)
   986 
  1029 
   987 lemma abs_of_nonneg [simp]: "0 \<le> a \<Longrightarrow> abs a = (a::'a::lordered_ab_group_abs)"
  1030 lemma abs_of_nonneg [simp]: "0 \<le> a \<Longrightarrow> \<bar>a\<bar> = a"
   988 by (simp add: iffD1[OF zero_le_iff_zero_nprt] iffD1[OF le_zero_iff_pprt_id] abs_prts)
  1031   by (simp add: iffD1 [OF zero_le_iff_zero_nprt]
   989 
  1032     iffD1[OF le_zero_iff_pprt_id] abs_prts)
   990 lemma abs_of_pos: "0 < (x::'a::lordered_ab_group_abs) ==> abs x = x";
  1033 
   991 by (rule abs_of_nonneg, rule order_less_imp_le);
  1034 lemma abs_of_pos: "0 < x \<Longrightarrow> \<bar>x\<bar> = x"
   992 
  1035   by (rule abs_of_nonneg, rule less_imp_le)
   993 lemma abs_of_nonpos [simp]: "a \<le> 0 \<Longrightarrow> abs a = -(a::'a::lordered_ab_group_abs)"
  1036 
   994 by (simp add: iffD1[OF le_zero_iff_zero_pprt] iffD1[OF zero_le_iff_nprt_id] abs_prts)
  1037 lemma abs_of_nonpos [simp]: "a \<le> 0 \<Longrightarrow> \<bar>a\<bar> = - a"
   995 
  1038   by (simp add: iffD1 [OF le_zero_iff_zero_pprt]
   996 lemma abs_of_neg: "(x::'a::lordered_ab_group_abs) <  0 ==> 
  1039     iffD1 [OF zero_le_iff_nprt_id] abs_prts)
   997   abs x = - x"
  1040 
   998 by (rule abs_of_nonpos, rule order_less_imp_le)
  1041 lemma abs_of_neg: "x < 0 \<Longrightarrow> \<bar>x\<bar> = - x"
   999 
  1042   by (rule abs_of_nonpos, rule less_imp_le)
  1000 lemma abs_leI: "[|a \<le> b; -a \<le> b|] ==> abs a \<le> (b::'a::lordered_ab_group_abs)"
  1043 
  1001 by (simp add: abs_lattice le_supI)
  1044 lemma abs_leI: "a \<le> b \<Longrightarrow> - a \<le> b \<Longrightarrow> \<bar>a\<bar> \<le> b"
  1002 
  1045   by (simp add: abs_lattice le_supI)
  1003 lemma le_minus_self_iff: "(a \<le> -a) = (a \<le> (0::'a::lordered_ab_group))"
  1046 
  1004 proof -
  1047 lemma le_minus_self_iff: "a \<le> - a \<longleftrightarrow> a \<le> 0"
  1005   from add_le_cancel_left[of "-a" "a+a" "0"] have "(a <= -a) = (a+a <= 0)" 
  1048 proof -
       
  1049   from add_le_cancel_left [of "uminus a" "plus a a" zero]
       
  1050   have "(a <= -a) = (a+a <= 0)" 
  1006     by (simp add: add_assoc[symmetric])
  1051     by (simp add: add_assoc[symmetric])
  1007   thus ?thesis by simp
  1052   thus ?thesis by simp
  1008 qed
  1053 qed
  1009 
  1054 
  1010 lemma minus_le_self_iff: "(-a \<le> a) = (0 \<le> (a::'a::lordered_ab_group))"
  1055 lemma minus_le_self_iff: "- a \<le> a \<longleftrightarrow> 0 \<le> a"
  1011 proof -
  1056 proof -
  1012   from add_le_cancel_left[of "-a" "0" "a+a"] have "(-a <= a) = (0 <= a+a)" 
  1057   from add_le_cancel_left [of "uminus a" zero "plus a a"]
       
  1058   have "(-a <= a) = (0 <= a+a)" 
  1013     by (simp add: add_assoc[symmetric])
  1059     by (simp add: add_assoc[symmetric])
  1014   thus ?thesis by simp
  1060   thus ?thesis by simp
  1015 qed
  1061 qed
  1016 
  1062 
  1017 lemma abs_le_D1: "abs a \<le> b ==> a \<le> (b::'a::lordered_ab_group_abs)"
  1063 lemma abs_le_D1: "\<bar>a\<bar> \<le> b \<Longrightarrow> a \<le> b"
  1018 by (insert abs_ge_self, blast intro: order_trans)
  1064   by (insert abs_ge_self, blast intro: order_trans)
  1019 
  1065 
  1020 lemma abs_le_D2: "abs a \<le> b ==> -a \<le> (b::'a::lordered_ab_group_abs)"
  1066 lemma abs_le_D2: "\<bar>a\<bar> \<le> b \<Longrightarrow> - a \<le> b"
  1021 by (insert abs_le_D1 [of "-a"], simp)
  1067   by (insert abs_le_D1 [of "uminus a"], simp)
  1022 
  1068 
  1023 lemma abs_le_iff: "(abs a \<le> b) = (a \<le> b & -a \<le> (b::'a::lordered_ab_group_abs))"
  1069 lemma abs_le_iff: "\<bar>a\<bar> \<le> b \<longleftrightarrow> a \<le> b \<and> - a \<le> b"
  1024 by (blast intro: abs_leI dest: abs_le_D1 abs_le_D2)
  1070   by (blast intro: abs_leI dest: abs_le_D1 abs_le_D2)
  1025 
  1071 
  1026 lemma abs_triangle_ineq: "abs(a+b) \<le> abs a + abs(b::'a::lordered_ab_group_abs)"
  1072 lemma abs_triangle_ineq: "\<bar>a + b\<bar> \<le> \<bar>a\<bar> + \<bar>b\<bar>"
  1027 proof -
  1073 proof -
  1028   have g:"abs a + abs b = sup (a+b) (sup (-a-b) (sup (-a+b) (a + (-b))))" (is "_=sup ?m ?n")
  1074   have g:"abs a + abs b = sup (a+b) (sup (-a-b) (sup (-a+b) (a + (-b))))" (is "_=sup ?m ?n")
  1029     by (simp add: abs_lattice add_sup_inf_distribs sup_aci diff_minus)
  1075     by (simp add: abs_lattice add_sup_inf_distribs sup_ACI diff_minus)
  1030   have a:"a+b <= sup ?m ?n" by (simp)
  1076   have a:"a+b <= sup ?m ?n" by (simp)
  1031   have b:"-a-b <= ?n" by (simp) 
  1077   have b:"-a-b <= ?n" by (simp) 
  1032   have c:"?n <= sup ?m ?n" by (simp)
  1078   have c:"?n <= sup ?m ?n" by (simp)
  1033   from b c have d: "-a-b <= sup ?m ?n" by(rule order_trans)
  1079   from b c have d: "-a-b <= sup ?m ?n" by(rule order_trans)
  1034   have e:"-a-b = -(a+b)" by (simp add: diff_minus)
  1080   have e:"-a-b = -(a+b)" by (simp add: diff_minus)
  1035   from a d e have "abs(a+b) <= sup ?m ?n" 
  1081   from a d e have "abs(a+b) <= sup ?m ?n" 
  1036     by (drule_tac abs_leI, auto)
  1082     by (drule_tac abs_leI, auto)
  1037   with g[symmetric] show ?thesis by simp
  1083   with g[symmetric] show ?thesis by simp
  1038 qed
  1084 qed
  1039 
  1085 
  1040 lemma abs_triangle_ineq2: "abs (a::'a::lordered_ab_group_abs) - 
  1086 lemma abs_triangle_ineq2: "\<bar>a\<bar> - \<bar>b\<bar> \<le> \<bar>a - b\<bar>"
  1041     abs b <= abs (a - b)"
       
  1042   apply (simp add: compare_rls)
  1087   apply (simp add: compare_rls)
  1043   apply (subgoal_tac "abs a = abs (a - b + b)")
  1088   apply (subgoal_tac "abs a = abs (plus (minus a b) b)")
  1044   apply (erule ssubst)
  1089   apply (erule ssubst)
  1045   apply (rule abs_triangle_ineq)
  1090   apply (rule abs_triangle_ineq)
  1046   apply (rule arg_cong);back;
  1091   apply (rule arg_cong) back
  1047   apply (simp add: compare_rls)
  1092   apply (simp add: compare_rls)
  1048 done
  1093 done
  1049 
  1094 
  1050 lemma abs_triangle_ineq3: 
  1095 lemma abs_triangle_ineq3: "\<bar>\<bar>a\<bar> - \<bar>b\<bar>\<bar> \<le> \<bar>a - b\<bar>"
  1051     "abs(abs (a::'a::lordered_ab_group_abs) - abs b) <= abs (a - b)"
       
  1052   apply (subst abs_le_iff)
  1096   apply (subst abs_le_iff)
  1053   apply auto
  1097   apply auto
  1054   apply (rule abs_triangle_ineq2)
  1098   apply (rule abs_triangle_ineq2)
  1055   apply (subst abs_minus_commute)
  1099   apply (subst abs_minus_commute)
  1056   apply (rule abs_triangle_ineq2)
  1100   apply (rule abs_triangle_ineq2)
  1057 done
  1101 done
  1058 
  1102 
  1059 lemma abs_triangle_ineq4: "abs ((a::'a::lordered_ab_group_abs) - b) <= 
  1103 lemma abs_triangle_ineq4: "\<bar>a - b\<bar> \<le> \<bar>a\<bar> + \<bar>b\<bar>"
  1060     abs a + abs b"
  1104 proof -
  1061 proof -;
       
  1062   have "abs(a - b) = abs(a + - b)"
  1105   have "abs(a - b) = abs(a + - b)"
  1063     by (subst diff_minus, rule refl)
  1106     by (subst diff_minus, rule refl)
  1064   also have "... <= abs a + abs (- b)"
  1107   also have "... <= abs a + abs (- b)"
  1065     by (rule abs_triangle_ineq)
  1108     by (rule abs_triangle_ineq)
  1066   finally show ?thesis
  1109   finally show ?thesis
  1067     by simp
  1110     by simp
  1068 qed
  1111 qed
  1069 
  1112 
  1070 lemma abs_diff_triangle_ineq:
  1113 lemma abs_diff_triangle_ineq: "\<bar>a + b - (c + d)\<bar> \<le> \<bar>a - c\<bar> + \<bar>b - d\<bar>"
  1071      "\<bar>(a::'a::lordered_ab_group_abs) + b - (c+d)\<bar> \<le> \<bar>a-c\<bar> + \<bar>b-d\<bar>"
       
  1072 proof -
  1114 proof -
  1073   have "\<bar>a + b - (c+d)\<bar> = \<bar>(a-c) + (b-d)\<bar>" by (simp add: diff_minus add_ac)
  1115   have "\<bar>a + b - (c+d)\<bar> = \<bar>(a-c) + (b-d)\<bar>" by (simp add: diff_minus add_ac)
  1074   also have "... \<le> \<bar>a-c\<bar> + \<bar>b-d\<bar>" by (rule abs_triangle_ineq)
  1116   also have "... \<le> \<bar>a-c\<bar> + \<bar>b-d\<bar>" by (rule abs_triangle_ineq)
  1075   finally show ?thesis .
  1117   finally show ?thesis .
  1076 qed
  1118 qed
  1077 
  1119 
  1078 lemma abs_add_abs[simp]:
  1120 lemma abs_add_abs[simp]:
  1079 fixes a:: "'a::{lordered_ab_group_abs}"
  1121   "\<bar>\<bar>a\<bar> + \<bar>b\<bar>\<bar> = \<bar>a\<bar> + \<bar>b\<bar>" (is "?L = ?R")
  1080 shows "abs(abs a + abs b) = abs a + abs b" (is "?L = ?R")
  1122 proof (rule antisym)
  1081 proof (rule order_antisym)
       
  1082   show "?L \<ge> ?R" by(rule abs_ge_self)
  1123   show "?L \<ge> ?R" by(rule abs_ge_self)
  1083 next
  1124 next
  1084   have "?L \<le> \<bar>\<bar>a\<bar>\<bar> + \<bar>\<bar>b\<bar>\<bar>" by(rule abs_triangle_ineq)
  1125   have "?L \<le> \<bar>\<bar>a\<bar>\<bar> + \<bar>\<bar>b\<bar>\<bar>" by(rule abs_triangle_ineq)
  1085   also have "\<dots> = ?R" by simp
  1126   also have "\<dots> = ?R" by simp
  1086   finally show "?L \<le> ?R" .
  1127   finally show "?L \<le> ?R" .
  1087 qed
  1128 qed
  1088 
  1129 
       
  1130 end
       
  1131 
       
  1132 lemma sup_eq_if:
       
  1133   fixes a :: "'a\<Colon>{lordered_ab_group, linorder}"
       
  1134   shows "sup a (- a) = (if a < 0 then - a else a)"
       
  1135 proof -
       
  1136   note add_le_cancel_right [of a a "- a", symmetric, simplified]
       
  1137   moreover note add_le_cancel_right [of "-a" a a, symmetric, simplified]
       
  1138   then show ?thesis by (auto simp: sup_max max_def)
       
  1139 qed
       
  1140 
       
  1141 lemma abs_if_lattice:
       
  1142   fixes a :: "'a\<Colon>{lordered_ab_group_abs, linorder}"
       
  1143   shows "\<bar>a\<bar> = (if a < 0 then - a else a)"
       
  1144   by auto
       
  1145 
       
  1146 
  1089 text {* Needed for abelian cancellation simprocs: *}
  1147 text {* Needed for abelian cancellation simprocs: *}
  1090 
  1148 
  1091 lemma add_cancel_21: "((x::'a::ab_group_add) + (y + z) = y + u) = (x + z = u)"
  1149 lemma add_cancel_21: "((x::'a::ab_group_add) + (y + z) = y + u) = (x + z = u)"
  1092 apply (subst add_left_commute)
  1150 apply (subst add_left_commute)
  1093 apply (subst add_left_cancel)
  1151 apply (subst add_left_cancel)
  1114 by (simp add: diff_minus)
  1172 by (simp add: diff_minus)
  1115 
  1173 
  1116 lemma add_minus_cancel: "(a::'a::ab_group_add) + (-a + b) = b"
  1174 lemma add_minus_cancel: "(a::'a::ab_group_add) + (-a + b) = b"
  1117 by (simp add: add_assoc[symmetric])
  1175 by (simp add: add_assoc[symmetric])
  1118 
  1176 
  1119 lemma  le_add_right_mono: 
  1177 lemma le_add_right_mono: 
  1120   assumes 
  1178   assumes 
  1121   "a <= b + (c::'a::pordered_ab_group_add)"
  1179   "a <= b + (c::'a::pordered_ab_group_add)"
  1122   "c <= d"    
  1180   "c <= d"    
  1123   shows "a <= b + d"
  1181   shows "a <= b + d"
  1124   apply (rule_tac order_trans[where y = "b+c"])
  1182   apply (rule_tac order_trans[where y = "b+c"])
  1127 
  1185 
  1128 lemmas group_simps =
  1186 lemmas group_simps =
  1129   mult_ac
  1187   mult_ac
  1130   add_ac
  1188   add_ac
  1131   add_diff_eq diff_add_eq diff_diff_eq diff_diff_eq2
  1189   add_diff_eq diff_add_eq diff_diff_eq diff_diff_eq2
  1132   diff_eq_eq eq_diff_eq  diff_minus[symmetric] uminus_add_conv_diff
  1190   diff_eq_eq eq_diff_eq diff_minus [symmetric] uminus_add_conv_diff
  1133   diff_less_eq less_diff_eq diff_le_eq le_diff_eq
  1191   diff_less_eq less_diff_eq diff_le_eq le_diff_eq
  1134 
  1192 
  1135 lemma estimate_by_abs:
  1193 lemma estimate_by_abs:
  1136   "a + b <= (c::'a::lordered_ab_group_abs) \<Longrightarrow> a <= c + abs b" 
  1194   "a + b <= (c::'a::lordered_ab_group_abs) \<Longrightarrow> a <= c + abs b" 
  1137 proof -
  1195 proof -
  1138   assume "a+b <= c"
  1196   assume "a+b <= c"
  1139   hence 2: "a <= c+(-b)" by (simp add: group_simps)
  1197   hence 2: "a <= c+(-b)" by (simp add: group_simps)
  1140   have 3: "(-b) <= abs b" by (rule abs_ge_minus_self)
  1198   have 3: "(-b) <= abs b" by (rule abs_ge_minus_self)
  1141   show ?thesis by (rule le_add_right_mono[OF 2 3])
  1199   show ?thesis by (rule le_add_right_mono[OF 2 3])
  1142 qed
  1200 qed
       
  1201 
       
  1202 subsection {* Tools setup *}
  1143 
  1203 
  1144 lemma add_mono_thms_ordered_semiring [noatp]:
  1204 lemma add_mono_thms_ordered_semiring [noatp]:
  1145   fixes i j k :: "'a\<Colon>pordered_ab_semigroup_add"
  1205   fixes i j k :: "'a\<Colon>pordered_ab_semigroup_add"
  1146   shows "i \<le> j \<and> k \<le> l \<Longrightarrow> i + k \<le> j + l"
  1206   shows "i \<le> j \<and> k \<le> l \<Longrightarrow> i + k \<le> j + l"
  1147     and "i = j \<and> k \<le> l \<Longrightarrow> i + k \<le> j + l"
  1207     and "i = j \<and> k \<le> l \<Longrightarrow> i + k \<le> j + l"
  1156     and "i < j \<and> k \<le> l \<Longrightarrow> i + k < j + l"
  1216     and "i < j \<and> k \<le> l \<Longrightarrow> i + k < j + l"
  1157     and "i \<le> j \<and> k < l \<Longrightarrow> i + k < j + l"
  1217     and "i \<le> j \<and> k < l \<Longrightarrow> i + k < j + l"
  1158     and "i < j \<and> k < l \<Longrightarrow> i + k < j + l"
  1218     and "i < j \<and> k < l \<Longrightarrow> i + k < j + l"
  1159 by (auto intro: add_strict_right_mono add_strict_left_mono
  1219 by (auto intro: add_strict_right_mono add_strict_left_mono
  1160   add_less_le_mono add_le_less_mono add_strict_mono)
  1220   add_less_le_mono add_le_less_mono add_strict_mono)
  1161 
       
  1162 
       
  1163 subsection {* Tools setup *}
       
  1164 
  1221 
  1165 text{*Simplification of @{term "x-y < 0"}, etc.*}
  1222 text{*Simplification of @{term "x-y < 0"}, etc.*}
  1166 lemmas diff_less_0_iff_less [simp] = less_iff_diff_less_0 [symmetric]
  1223 lemmas diff_less_0_iff_less [simp] = less_iff_diff_less_0 [symmetric]
  1167 lemmas diff_eq_0_iff_eq [simp, noatp] = eq_iff_diff_eq_0 [symmetric]
  1224 lemmas diff_eq_0_iff_eq [simp, noatp] = eq_iff_diff_eq_0 [symmetric]
  1168 lemmas diff_le_0_iff_le [simp] = le_iff_diff_le_0 [symmetric]
  1225 lemmas diff_le_0_iff_le [simp] = le_iff_diff_le_0 [symmetric]