equal
deleted
inserted
replaced
1100 unfolding continuous_on_def by (intro ballI tendsto_intros) |
1100 unfolding continuous_on_def by (intro ballI tendsto_intros) |
1101 |
1101 |
1102 lemma closed_positive_orthant: "closed {x::real^'n. \<forall>i. 0 \<le>x$i}" |
1102 lemma closed_positive_orthant: "closed {x::real^'n. \<forall>i. 0 \<le>x$i}" |
1103 by (simp add: Collect_all_eq closed_INT closed_Collect_le) |
1103 by (simp add: Collect_all_eq closed_INT closed_Collect_le) |
1104 |
1104 |
1105 lemma Lim_component_cart: |
|
1106 fixes f :: "'a \<Rightarrow> 'b::metric_space ^ 'n" |
|
1107 shows "(f ---> l) net \<Longrightarrow> ((\<lambda>a. f a $i) ---> l$i) net" |
|
1108 by (intro tendsto_intros) |
|
1109 |
|
1110 lemma bounded_component_cart: "bounded s \<Longrightarrow> bounded ((\<lambda>x. x $ i) ` s)" |
1105 lemma bounded_component_cart: "bounded s \<Longrightarrow> bounded ((\<lambda>x. x $ i) ` s)" |
1111 unfolding bounded_def |
1106 unfolding bounded_def |
1112 apply clarify |
1107 apply clarify |
1113 apply (rule_tac x="x $ i" in exI) |
1108 apply (rule_tac x="x $ i" in exI) |
1114 apply (rule_tac x="e" in exI) |
1109 apply (rule_tac x="e" in exI) |
2004 unfolding vec_sub vec_eq_iff by(auto simp add: split_beta) |
1999 unfolding vec_sub vec_eq_iff by(auto simp add: split_beta) |
2005 show ?thesis using assms unfolding has_integral apply safe |
2000 show ?thesis using assms unfolding has_integral apply safe |
2006 apply(erule_tac x=e in allE,safe) apply(rule_tac x=d in exI,safe) |
2001 apply(erule_tac x=e in allE,safe) apply(rule_tac x=d in exI,safe) |
2007 apply(erule_tac x=p in allE,safe) unfolding * norm_vector_1 by auto qed |
2002 apply(erule_tac x=p in allE,safe) unfolding * norm_vector_1 by auto qed |
2008 |
2003 |
|
2004 text {* Legacy theorem names *} |
|
2005 |
|
2006 lemmas Lim_component_cart = tendsto_vec_nth |
|
2007 |
2009 end |
2008 end |