src/HOL/Library/Quotient_Sum.thy
changeset 35222 4f1fba00f66d
child 35243 024fef37a65d
equal deleted inserted replaced
35221:5cb63cb4213f 35222:4f1fba00f66d
       
     1 (*  Title:      Quotient_Sum.thy
       
     2     Author:     Cezary Kaliszyk and Christian Urban
       
     3 *)
       
     4 theory Quotient_Sum
       
     5 imports Main Quotient_Syntax
       
     6 begin
       
     7 
       
     8 section {* Quotient infrastructure for the sum type. *}
       
     9 
       
    10 fun
       
    11   sum_rel
       
    12 where
       
    13   "sum_rel R1 R2 (Inl a1) (Inl b1) = R1 a1 b1"
       
    14 | "sum_rel R1 R2 (Inl a1) (Inr b2) = False"
       
    15 | "sum_rel R1 R2 (Inr a2) (Inl b1) = False"
       
    16 | "sum_rel R1 R2 (Inr a2) (Inr b2) = R2 a2 b2"
       
    17 
       
    18 fun
       
    19   sum_map
       
    20 where
       
    21   "sum_map f1 f2 (Inl a) = Inl (f1 a)"
       
    22 | "sum_map f1 f2 (Inr a) = Inr (f2 a)"
       
    23 
       
    24 declare [[map "+" = (sum_map, sum_rel)]]
       
    25 
       
    26 
       
    27 text {* should probably be in Sum_Type.thy *}
       
    28 lemma split_sum_all:
       
    29   shows "(\<forall>x. P x) \<longleftrightarrow> (\<forall>x. P (Inl x)) \<and> (\<forall>x. P (Inr x))"
       
    30   apply(auto)
       
    31   apply(case_tac x)
       
    32   apply(simp_all)
       
    33   done
       
    34 
       
    35 lemma sum_equivp[quot_equiv]:
       
    36   assumes a: "equivp R1"
       
    37   assumes b: "equivp R2"
       
    38   shows "equivp (sum_rel R1 R2)"
       
    39   apply(rule equivpI)
       
    40   unfolding reflp_def symp_def transp_def
       
    41   apply(simp_all add: split_sum_all)
       
    42   apply(blast intro: equivp_reflp[OF a] equivp_reflp[OF b])
       
    43   apply(blast intro: equivp_symp[OF a] equivp_symp[OF b])
       
    44   apply(blast intro: equivp_transp[OF a] equivp_transp[OF b])
       
    45   done
       
    46 
       
    47 lemma sum_quotient[quot_thm]:
       
    48   assumes q1: "Quotient R1 Abs1 Rep1"
       
    49   assumes q2: "Quotient R2 Abs2 Rep2"
       
    50   shows "Quotient (sum_rel R1 R2) (sum_map Abs1 Abs2) (sum_map Rep1 Rep2)"
       
    51   unfolding Quotient_def
       
    52   apply(simp add: split_sum_all)
       
    53   apply(simp_all add: Quotient_abs_rep[OF q1] Quotient_rel_rep[OF q1])
       
    54   apply(simp_all add: Quotient_abs_rep[OF q2] Quotient_rel_rep[OF q2])
       
    55   using q1 q2
       
    56   unfolding Quotient_def
       
    57   apply(blast)+
       
    58   done
       
    59 
       
    60 lemma sum_Inl_rsp[quot_respect]:
       
    61   assumes q1: "Quotient R1 Abs1 Rep1"
       
    62   assumes q2: "Quotient R2 Abs2 Rep2"
       
    63   shows "(R1 ===> sum_rel R1 R2) Inl Inl"
       
    64   by simp
       
    65 
       
    66 lemma sum_Inr_rsp[quot_respect]:
       
    67   assumes q1: "Quotient R1 Abs1 Rep1"
       
    68   assumes q2: "Quotient R2 Abs2 Rep2"
       
    69   shows "(R2 ===> sum_rel R1 R2) Inr Inr"
       
    70   by simp
       
    71 
       
    72 lemma sum_Inl_prs[quot_preserve]:
       
    73   assumes q1: "Quotient R1 Abs1 Rep1"
       
    74   assumes q2: "Quotient R2 Abs2 Rep2"
       
    75   shows "(Rep1 ---> sum_map Abs1 Abs2) Inl = Inl"
       
    76   apply(simp add: expand_fun_eq)
       
    77   apply(simp add: Quotient_abs_rep[OF q1])
       
    78   done
       
    79 
       
    80 lemma sum_Inr_prs[quot_preserve]:
       
    81   assumes q1: "Quotient R1 Abs1 Rep1"
       
    82   assumes q2: "Quotient R2 Abs2 Rep2"
       
    83   shows "(Rep2 ---> sum_map Abs1 Abs2) Inr = Inr"
       
    84   apply(simp add: expand_fun_eq)
       
    85   apply(simp add: Quotient_abs_rep[OF q2])
       
    86   done
       
    87 
       
    88 lemma sum_map_id[id_simps]:
       
    89   shows "sum_map id id = id"
       
    90   by (simp add: expand_fun_eq split_sum_all)
       
    91 
       
    92 lemma sum_rel_eq[id_simps]:
       
    93   shows "sum_rel (op =) (op =) = (op =)"
       
    94   by (simp add: expand_fun_eq split_sum_all)
       
    95 
       
    96 end