src/HOL/Analysis/Infinite_Products.thy
changeset 66277 512b0dc09061
child 68064 b249fab48c76
equal deleted inserted replaced
66276:acc3b7dd0b21 66277:512b0dc09061
       
     1 (*
       
     2   File:      HOL/Analysis/Infinite_Product.thy
       
     3   Author:    Manuel Eberl
       
     4 
       
     5   Basic results about convergence and absolute convergence of infinite products
       
     6   and their connection to summability.
       
     7 *)
       
     8 section \<open>Infinite Products\<close>
       
     9 theory Infinite_Products
       
    10   imports Complex_Main
       
    11 begin
       
    12 
       
    13 lemma sum_le_prod:
       
    14   fixes f :: "'a \<Rightarrow> 'b :: linordered_semidom"
       
    15   assumes "\<And>x. x \<in> A \<Longrightarrow> f x \<ge> 0"
       
    16   shows   "sum f A \<le> (\<Prod>x\<in>A. 1 + f x)"
       
    17   using assms
       
    18 proof (induction A rule: infinite_finite_induct)
       
    19   case (insert x A)
       
    20   from insert.hyps have "sum f A + f x * (\<Prod>x\<in>A. 1) \<le> (\<Prod>x\<in>A. 1 + f x) + f x * (\<Prod>x\<in>A. 1 + f x)"
       
    21     by (intro add_mono insert mult_left_mono prod_mono) (auto intro: insert.prems)
       
    22   with insert.hyps show ?case by (simp add: algebra_simps)
       
    23 qed simp_all
       
    24 
       
    25 lemma prod_le_exp_sum:
       
    26   fixes f :: "'a \<Rightarrow> real"
       
    27   assumes "\<And>x. x \<in> A \<Longrightarrow> f x \<ge> 0"
       
    28   shows   "prod (\<lambda>x. 1 + f x) A \<le> exp (sum f A)"
       
    29   using assms
       
    30 proof (induction A rule: infinite_finite_induct)
       
    31   case (insert x A)
       
    32   have "(1 + f x) * (\<Prod>x\<in>A. 1 + f x) \<le> exp (f x) * exp (sum f A)"
       
    33     using insert.prems by (intro mult_mono insert prod_nonneg exp_ge_add_one_self) auto
       
    34   with insert.hyps show ?case by (simp add: algebra_simps exp_add)
       
    35 qed simp_all
       
    36 
       
    37 lemma lim_ln_1_plus_x_over_x_at_0: "(\<lambda>x::real. ln (1 + x) / x) \<midarrow>0\<rightarrow> 1"
       
    38 proof (rule lhopital)
       
    39   show "(\<lambda>x::real. ln (1 + x)) \<midarrow>0\<rightarrow> 0"
       
    40     by (rule tendsto_eq_intros refl | simp)+
       
    41   have "eventually (\<lambda>x::real. x \<in> {-1/2<..<1/2}) (nhds 0)"
       
    42     by (rule eventually_nhds_in_open) auto
       
    43   hence *: "eventually (\<lambda>x::real. x \<in> {-1/2<..<1/2}) (at 0)"
       
    44     by (rule filter_leD [rotated]) (simp_all add: at_within_def)   
       
    45   show "eventually (\<lambda>x::real. ((\<lambda>x. ln (1 + x)) has_field_derivative inverse (1 + x)) (at x)) (at 0)"
       
    46     using * by eventually_elim (auto intro!: derivative_eq_intros simp: field_simps)
       
    47   show "eventually (\<lambda>x::real. ((\<lambda>x. x) has_field_derivative 1) (at x)) (at 0)"
       
    48     using * by eventually_elim (auto intro!: derivative_eq_intros simp: field_simps)
       
    49   show "\<forall>\<^sub>F x in at 0. x \<noteq> 0" by (auto simp: at_within_def eventually_inf_principal)
       
    50   show "(\<lambda>x::real. inverse (1 + x) / 1) \<midarrow>0\<rightarrow> 1"
       
    51     by (rule tendsto_eq_intros refl | simp)+
       
    52 qed auto
       
    53 
       
    54 definition convergent_prod :: "(nat \<Rightarrow> 'a :: {t2_space,comm_semiring_1}) \<Rightarrow> bool" where
       
    55   "convergent_prod f \<longleftrightarrow> (\<exists>M L. (\<lambda>n. \<Prod>i\<le>n. f (i+M)) \<longlonglongrightarrow> L \<and> L \<noteq> 0)"
       
    56 
       
    57 lemma convergent_prod_altdef:
       
    58   fixes f :: "nat \<Rightarrow> 'a :: {t2_space,comm_semiring_1}"
       
    59   shows "convergent_prod f \<longleftrightarrow> (\<exists>M L. (\<forall>n\<ge>M. f n \<noteq> 0) \<and> (\<lambda>n. \<Prod>i\<le>n. f (i+M)) \<longlonglongrightarrow> L \<and> L \<noteq> 0)"
       
    60 proof
       
    61   assume "convergent_prod f"
       
    62   then obtain M L where *: "(\<lambda>n. \<Prod>i\<le>n. f (i+M)) \<longlonglongrightarrow> L" "L \<noteq> 0"
       
    63     by (auto simp: convergent_prod_def)
       
    64   have "f i \<noteq> 0" if "i \<ge> M" for i
       
    65   proof
       
    66     assume "f i = 0"
       
    67     have **: "eventually (\<lambda>n. (\<Prod>i\<le>n. f (i+M)) = 0) sequentially"
       
    68       using eventually_ge_at_top[of "i - M"]
       
    69     proof eventually_elim
       
    70       case (elim n)
       
    71       with \<open>f i = 0\<close> and \<open>i \<ge> M\<close> show ?case
       
    72         by (auto intro!: bexI[of _ "i - M"] prod_zero)
       
    73     qed
       
    74     have "(\<lambda>n. (\<Prod>i\<le>n. f (i+M))) \<longlonglongrightarrow> 0"
       
    75       unfolding filterlim_iff
       
    76       by (auto dest!: eventually_nhds_x_imp_x intro!: eventually_mono[OF **])
       
    77     from tendsto_unique[OF _ this *(1)] and *(2)
       
    78       show False by simp
       
    79   qed
       
    80   with * show "(\<exists>M L. (\<forall>n\<ge>M. f n \<noteq> 0) \<and> (\<lambda>n. \<Prod>i\<le>n. f (i+M)) \<longlonglongrightarrow> L \<and> L \<noteq> 0)" 
       
    81     by blast
       
    82 qed (auto simp: convergent_prod_def)
       
    83 
       
    84 definition abs_convergent_prod :: "(nat \<Rightarrow> _) \<Rightarrow> bool" where
       
    85   "abs_convergent_prod f \<longleftrightarrow> convergent_prod (\<lambda>i. 1 + norm (f i - 1))"
       
    86 
       
    87 lemma abs_convergent_prodI:
       
    88   assumes "convergent (\<lambda>n. \<Prod>i\<le>n. 1 + norm (f i - 1))"
       
    89   shows   "abs_convergent_prod f"
       
    90 proof -
       
    91   from assms obtain L where L: "(\<lambda>n. \<Prod>i\<le>n. 1 + norm (f i - 1)) \<longlonglongrightarrow> L"
       
    92     by (auto simp: convergent_def)
       
    93   have "L \<ge> 1"
       
    94   proof (rule tendsto_le)
       
    95     show "eventually (\<lambda>n. (\<Prod>i\<le>n. 1 + norm (f i - 1)) \<ge> 1) sequentially"
       
    96     proof (intro always_eventually allI)
       
    97       fix n
       
    98       have "(\<Prod>i\<le>n. 1 + norm (f i - 1)) \<ge> (\<Prod>i\<le>n. 1)"
       
    99         by (intro prod_mono) auto
       
   100       thus "(\<Prod>i\<le>n. 1 + norm (f i - 1)) \<ge> 1" by simp
       
   101     qed
       
   102   qed (use L in simp_all)
       
   103   hence "L \<noteq> 0" by auto
       
   104   with L show ?thesis unfolding abs_convergent_prod_def convergent_prod_def
       
   105     by (intro exI[of _ "0::nat"] exI[of _ L]) auto
       
   106 qed
       
   107 
       
   108 lemma
       
   109   fixes f :: "nat \<Rightarrow> 'a :: {real_normed_div_algebra,idom}"
       
   110   assumes "convergent_prod f"
       
   111   shows   convergent_prod_imp_convergent: "convergent (\<lambda>n. \<Prod>i\<le>n. f i)"
       
   112     and   convergent_prod_to_zero_iff:    "(\<lambda>n. \<Prod>i\<le>n. f i) \<longlonglongrightarrow> 0 \<longleftrightarrow> (\<exists>i. f i = 0)"
       
   113 proof -
       
   114   from assms obtain M L 
       
   115     where M: "\<And>n. n \<ge> M \<Longrightarrow> f n \<noteq> 0" and "(\<lambda>n. \<Prod>i\<le>n. f (i + M)) \<longlonglongrightarrow> L" and "L \<noteq> 0"
       
   116     by (auto simp: convergent_prod_altdef)
       
   117   note this(2)
       
   118   also have "(\<lambda>n. \<Prod>i\<le>n. f (i + M)) = (\<lambda>n. \<Prod>i=M..M+n. f i)"
       
   119     by (intro ext prod.reindex_bij_witness[of _ "\<lambda>n. n - M" "\<lambda>n. n + M"]) auto
       
   120   finally have "(\<lambda>n. (\<Prod>i<M. f i) * (\<Prod>i=M..M+n. f i)) \<longlonglongrightarrow> (\<Prod>i<M. f i) * L"
       
   121     by (intro tendsto_mult tendsto_const)
       
   122   also have "(\<lambda>n. (\<Prod>i<M. f i) * (\<Prod>i=M..M+n. f i)) = (\<lambda>n. (\<Prod>i\<in>{..<M}\<union>{M..M+n}. f i))"
       
   123     by (subst prod.union_disjoint) auto
       
   124   also have "(\<lambda>n. {..<M} \<union> {M..M+n}) = (\<lambda>n. {..n+M})" by auto
       
   125   finally have lim: "(\<lambda>n. prod f {..n}) \<longlonglongrightarrow> prod f {..<M} * L" 
       
   126     by (rule LIMSEQ_offset)
       
   127   thus "convergent (\<lambda>n. \<Prod>i\<le>n. f i)"
       
   128     by (auto simp: convergent_def)
       
   129 
       
   130   show "(\<lambda>n. \<Prod>i\<le>n. f i) \<longlonglongrightarrow> 0 \<longleftrightarrow> (\<exists>i. f i = 0)"
       
   131   proof
       
   132     assume "\<exists>i. f i = 0"
       
   133     then obtain i where "f i = 0" by auto
       
   134     moreover with M have "i < M" by (cases "i < M") auto
       
   135     ultimately have "(\<Prod>i<M. f i) = 0" by auto
       
   136     with lim show "(\<lambda>n. \<Prod>i\<le>n. f i) \<longlonglongrightarrow> 0" by simp
       
   137   next
       
   138     assume "(\<lambda>n. \<Prod>i\<le>n. f i) \<longlonglongrightarrow> 0"
       
   139     from tendsto_unique[OF _ this lim] and \<open>L \<noteq> 0\<close>
       
   140     show "\<exists>i. f i = 0" by auto
       
   141   qed
       
   142 qed
       
   143 
       
   144 lemma abs_convergent_prod_altdef:
       
   145   "abs_convergent_prod f \<longleftrightarrow> convergent (\<lambda>n. \<Prod>i\<le>n. 1 + norm (f i - 1))"
       
   146 proof
       
   147   assume "abs_convergent_prod f"
       
   148   thus "convergent (\<lambda>n. \<Prod>i\<le>n. 1 + norm (f i - 1))"
       
   149     by (auto simp: abs_convergent_prod_def intro!: convergent_prod_imp_convergent)
       
   150 qed (auto intro: abs_convergent_prodI)
       
   151 
       
   152 lemma weierstrass_prod_ineq:
       
   153   fixes f :: "'a \<Rightarrow> real" 
       
   154   assumes "\<And>x. x \<in> A \<Longrightarrow> f x \<in> {0..1}"
       
   155   shows   "1 - sum f A \<le> (\<Prod>x\<in>A. 1 - f x)"
       
   156   using assms
       
   157 proof (induction A rule: infinite_finite_induct)
       
   158   case (insert x A)
       
   159   from insert.hyps and insert.prems 
       
   160     have "1 - sum f A + f x * (\<Prod>x\<in>A. 1 - f x) \<le> (\<Prod>x\<in>A. 1 - f x) + f x * (\<Prod>x\<in>A. 1)"
       
   161     by (intro insert.IH add_mono mult_left_mono prod_mono) auto
       
   162   with insert.hyps show ?case by (simp add: algebra_simps)
       
   163 qed simp_all
       
   164 
       
   165 lemma norm_prod_minus1_le_prod_minus1:
       
   166   fixes f :: "nat \<Rightarrow> 'a :: {real_normed_div_algebra,comm_ring_1}"  
       
   167   shows "norm (prod (\<lambda>n. 1 + f n) A - 1) \<le> prod (\<lambda>n. 1 + norm (f n)) A - 1"
       
   168 proof (induction A rule: infinite_finite_induct)
       
   169   case (insert x A)
       
   170   from insert.hyps have 
       
   171     "norm ((\<Prod>n\<in>insert x A. 1 + f n) - 1) = 
       
   172        norm ((\<Prod>n\<in>A. 1 + f n) - 1 + f x * (\<Prod>n\<in>A. 1 + f n))"
       
   173     by (simp add: algebra_simps)
       
   174   also have "\<dots> \<le> norm ((\<Prod>n\<in>A. 1 + f n) - 1) + norm (f x * (\<Prod>n\<in>A. 1 + f n))"
       
   175     by (rule norm_triangle_ineq)
       
   176   also have "norm (f x * (\<Prod>n\<in>A. 1 + f n)) = norm (f x) * (\<Prod>x\<in>A. norm (1 + f x))"
       
   177     by (simp add: prod_norm norm_mult)
       
   178   also have "(\<Prod>x\<in>A. norm (1 + f x)) \<le> (\<Prod>x\<in>A. norm (1::'a) + norm (f x))"
       
   179     by (intro prod_mono norm_triangle_ineq ballI conjI) auto
       
   180   also have "norm (1::'a) = 1" by simp
       
   181   also note insert.IH
       
   182   also have "(\<Prod>n\<in>A. 1 + norm (f n)) - 1 + norm (f x) * (\<Prod>x\<in>A. 1 + norm (f x)) =
       
   183                (\<Prod>n\<in>insert x A. 1 + norm (f n)) - 1"
       
   184     using insert.hyps by (simp add: algebra_simps)
       
   185   finally show ?case by - (simp_all add: mult_left_mono)
       
   186 qed simp_all
       
   187 
       
   188 lemma convergent_prod_imp_ev_nonzero:
       
   189   fixes f :: "nat \<Rightarrow> 'a :: {t2_space,comm_semiring_1}"
       
   190   assumes "convergent_prod f"
       
   191   shows   "eventually (\<lambda>n. f n \<noteq> 0) sequentially"
       
   192   using assms by (auto simp: eventually_at_top_linorder convergent_prod_altdef)
       
   193 
       
   194 lemma convergent_prod_imp_LIMSEQ:
       
   195   fixes f :: "nat \<Rightarrow> 'a :: {real_normed_field}"
       
   196   assumes "convergent_prod f"
       
   197   shows   "f \<longlonglongrightarrow> 1"
       
   198 proof -
       
   199   from assms obtain M L where L: "(\<lambda>n. \<Prod>i\<le>n. f (i+M)) \<longlonglongrightarrow> L" "\<And>n. n \<ge> M \<Longrightarrow> f n \<noteq> 0" "L \<noteq> 0"
       
   200     by (auto simp: convergent_prod_altdef)
       
   201   hence L': "(\<lambda>n. \<Prod>i\<le>Suc n. f (i+M)) \<longlonglongrightarrow> L" by (subst filterlim_sequentially_Suc)
       
   202   have "(\<lambda>n. (\<Prod>i\<le>Suc n. f (i+M)) / (\<Prod>i\<le>n. f (i+M))) \<longlonglongrightarrow> L / L"
       
   203     using L L' by (intro tendsto_divide) simp_all
       
   204   also from L have "L / L = 1" by simp
       
   205   also have "(\<lambda>n. (\<Prod>i\<le>Suc n. f (i+M)) / (\<Prod>i\<le>n. f (i+M))) = (\<lambda>n. f (n + Suc M))"
       
   206     using assms L by (auto simp: fun_eq_iff atMost_Suc)
       
   207   finally show ?thesis by (rule LIMSEQ_offset)
       
   208 qed
       
   209 
       
   210 lemma abs_convergent_prod_imp_summable:
       
   211   fixes f :: "nat \<Rightarrow> 'a :: real_normed_div_algebra"
       
   212   assumes "abs_convergent_prod f"
       
   213   shows "summable (\<lambda>i. norm (f i - 1))"
       
   214 proof -
       
   215   from assms have "convergent (\<lambda>n. \<Prod>i\<le>n. 1 + norm (f i - 1))" 
       
   216     unfolding abs_convergent_prod_def by (rule convergent_prod_imp_convergent)
       
   217   then obtain L where L: "(\<lambda>n. \<Prod>i\<le>n. 1 + norm (f i - 1)) \<longlonglongrightarrow> L"
       
   218     unfolding convergent_def by blast
       
   219   have "convergent (\<lambda>n. \<Sum>i\<le>n. norm (f i - 1))"
       
   220   proof (rule Bseq_monoseq_convergent)
       
   221     have "eventually (\<lambda>n. (\<Prod>i\<le>n. 1 + norm (f i - 1)) < L + 1) sequentially"
       
   222       using L(1) by (rule order_tendstoD) simp_all
       
   223     hence "\<forall>\<^sub>F x in sequentially. norm (\<Sum>i\<le>x. norm (f i - 1)) \<le> L + 1"
       
   224     proof eventually_elim
       
   225       case (elim n)
       
   226       have "norm (\<Sum>i\<le>n. norm (f i - 1)) = (\<Sum>i\<le>n. norm (f i - 1))"
       
   227         unfolding real_norm_def by (intro abs_of_nonneg sum_nonneg) simp_all
       
   228       also have "\<dots> \<le> (\<Prod>i\<le>n. 1 + norm (f i - 1))" by (rule sum_le_prod) auto
       
   229       also have "\<dots> < L + 1" by (rule elim)
       
   230       finally show ?case by simp
       
   231     qed
       
   232     thus "Bseq (\<lambda>n. \<Sum>i\<le>n. norm (f i - 1))" by (rule BfunI)
       
   233   next
       
   234     show "monoseq (\<lambda>n. \<Sum>i\<le>n. norm (f i - 1))"
       
   235       by (rule mono_SucI1) auto
       
   236   qed
       
   237   thus "summable (\<lambda>i. norm (f i - 1))" by (simp add: summable_iff_convergent')
       
   238 qed
       
   239 
       
   240 lemma summable_imp_abs_convergent_prod:
       
   241   fixes f :: "nat \<Rightarrow> 'a :: real_normed_div_algebra"
       
   242   assumes "summable (\<lambda>i. norm (f i - 1))"
       
   243   shows   "abs_convergent_prod f"
       
   244 proof (intro abs_convergent_prodI Bseq_monoseq_convergent)
       
   245   show "monoseq (\<lambda>n. \<Prod>i\<le>n. 1 + norm (f i - 1))"
       
   246     by (intro mono_SucI1) 
       
   247        (auto simp: atMost_Suc algebra_simps intro!: mult_nonneg_nonneg prod_nonneg)
       
   248 next
       
   249   show "Bseq (\<lambda>n. \<Prod>i\<le>n. 1 + norm (f i - 1))"
       
   250   proof (rule Bseq_eventually_mono)
       
   251     show "eventually (\<lambda>n. norm (\<Prod>i\<le>n. 1 + norm (f i - 1)) \<le> 
       
   252             norm (exp (\<Sum>i\<le>n. norm (f i - 1)))) sequentially"
       
   253       by (intro always_eventually allI) (auto simp: abs_prod exp_sum intro!: prod_mono)
       
   254   next
       
   255     from assms have "(\<lambda>n. \<Sum>i\<le>n. norm (f i - 1)) \<longlonglongrightarrow> (\<Sum>i. norm (f i - 1))"
       
   256       using sums_def_le by blast
       
   257     hence "(\<lambda>n. exp (\<Sum>i\<le>n. norm (f i - 1))) \<longlonglongrightarrow> exp (\<Sum>i. norm (f i - 1))"
       
   258       by (rule tendsto_exp)
       
   259     hence "convergent (\<lambda>n. exp (\<Sum>i\<le>n. norm (f i - 1)))"
       
   260       by (rule convergentI)
       
   261     thus "Bseq (\<lambda>n. exp (\<Sum>i\<le>n. norm (f i - 1)))"
       
   262       by (rule convergent_imp_Bseq)
       
   263   qed
       
   264 qed
       
   265 
       
   266 lemma abs_convergent_prod_conv_summable:
       
   267   fixes f :: "nat \<Rightarrow> 'a :: real_normed_div_algebra"
       
   268   shows "abs_convergent_prod f \<longleftrightarrow> summable (\<lambda>i. norm (f i - 1))"
       
   269   by (blast intro: abs_convergent_prod_imp_summable summable_imp_abs_convergent_prod)
       
   270 
       
   271 lemma abs_convergent_prod_imp_LIMSEQ:
       
   272   fixes f :: "nat \<Rightarrow> 'a :: {comm_ring_1,real_normed_div_algebra}"
       
   273   assumes "abs_convergent_prod f"
       
   274   shows   "f \<longlonglongrightarrow> 1"
       
   275 proof -
       
   276   from assms have "summable (\<lambda>n. norm (f n - 1))"
       
   277     by (rule abs_convergent_prod_imp_summable)
       
   278   from summable_LIMSEQ_zero[OF this] have "(\<lambda>n. f n - 1) \<longlonglongrightarrow> 0"
       
   279     by (simp add: tendsto_norm_zero_iff)
       
   280   from tendsto_add[OF this tendsto_const[of 1]] show ?thesis by simp
       
   281 qed
       
   282 
       
   283 lemma abs_convergent_prod_imp_ev_nonzero:
       
   284   fixes f :: "nat \<Rightarrow> 'a :: {comm_ring_1,real_normed_div_algebra}"
       
   285   assumes "abs_convergent_prod f"
       
   286   shows   "eventually (\<lambda>n. f n \<noteq> 0) sequentially"
       
   287 proof -
       
   288   from assms have "f \<longlonglongrightarrow> 1" 
       
   289     by (rule abs_convergent_prod_imp_LIMSEQ)
       
   290   hence "eventually (\<lambda>n. dist (f n) 1 < 1) at_top"
       
   291     by (auto simp: tendsto_iff)
       
   292   thus ?thesis by eventually_elim auto
       
   293 qed
       
   294 
       
   295 lemma convergent_prod_offset:
       
   296   assumes "convergent_prod (\<lambda>n. f (n + m))"  
       
   297   shows   "convergent_prod f"
       
   298 proof -
       
   299   from assms obtain M L where "(\<lambda>n. \<Prod>k\<le>n. f (k + (M + m))) \<longlonglongrightarrow> L" "L \<noteq> 0"
       
   300     by (auto simp: convergent_prod_def add.assoc)
       
   301   thus "convergent_prod f" unfolding convergent_prod_def by blast
       
   302 qed
       
   303 
       
   304 lemma abs_convergent_prod_offset:
       
   305   assumes "abs_convergent_prod (\<lambda>n. f (n + m))"  
       
   306   shows   "abs_convergent_prod f"
       
   307   using assms unfolding abs_convergent_prod_def by (rule convergent_prod_offset)
       
   308 
       
   309 lemma convergent_prod_ignore_initial_segment:
       
   310   fixes f :: "nat \<Rightarrow> 'a :: {real_normed_field}"
       
   311   assumes "convergent_prod f"
       
   312   shows   "convergent_prod (\<lambda>n. f (n + m))"
       
   313 proof -
       
   314   from assms obtain M L 
       
   315     where L: "(\<lambda>n. \<Prod>k\<le>n. f (k + M)) \<longlonglongrightarrow> L" "L \<noteq> 0" and nz: "\<And>n. n \<ge> M \<Longrightarrow> f n \<noteq> 0"
       
   316     by (auto simp: convergent_prod_altdef)
       
   317   define C where "C = (\<Prod>k<m. f (k + M))"
       
   318   from nz have [simp]: "C \<noteq> 0" 
       
   319     by (auto simp: C_def)
       
   320 
       
   321   from L(1) have "(\<lambda>n. \<Prod>k\<le>n+m. f (k + M)) \<longlonglongrightarrow> L" 
       
   322     by (rule LIMSEQ_ignore_initial_segment)
       
   323   also have "(\<lambda>n. \<Prod>k\<le>n+m. f (k + M)) = (\<lambda>n. C * (\<Prod>k\<le>n. f (k + M + m)))"
       
   324   proof (rule ext, goal_cases)
       
   325     case (1 n)
       
   326     have "{..n+m} = {..<m} \<union> {m..n+m}" by auto
       
   327     also have "(\<Prod>k\<in>\<dots>. f (k + M)) = C * (\<Prod>k=m..n+m. f (k + M))"
       
   328       unfolding C_def by (rule prod.union_disjoint) auto
       
   329     also have "(\<Prod>k=m..n+m. f (k + M)) = (\<Prod>k\<le>n. f (k + m + M))"
       
   330       by (intro ext prod.reindex_bij_witness[of _ "\<lambda>k. k + m" "\<lambda>k. k - m"]) auto
       
   331     finally show ?case by (simp add: add_ac)
       
   332   qed
       
   333   finally have "(\<lambda>n. C * (\<Prod>k\<le>n. f (k + M + m)) / C) \<longlonglongrightarrow> L / C"
       
   334     by (intro tendsto_divide tendsto_const) auto
       
   335   hence "(\<lambda>n. \<Prod>k\<le>n. f (k + M + m)) \<longlonglongrightarrow> L / C" by simp
       
   336   moreover from \<open>L \<noteq> 0\<close> have "L / C \<noteq> 0" by simp
       
   337   ultimately show ?thesis unfolding convergent_prod_def by blast
       
   338 qed
       
   339 
       
   340 lemma abs_convergent_prod_ignore_initial_segment:
       
   341   assumes "abs_convergent_prod f"
       
   342   shows   "abs_convergent_prod (\<lambda>n. f (n + m))"
       
   343   using assms unfolding abs_convergent_prod_def 
       
   344   by (rule convergent_prod_ignore_initial_segment)
       
   345 
       
   346 lemma summable_LIMSEQ': 
       
   347   assumes "summable (f::nat\<Rightarrow>'a::{t2_space,comm_monoid_add})"
       
   348   shows   "(\<lambda>n. \<Sum>i\<le>n. f i) \<longlonglongrightarrow> suminf f"
       
   349   using assms sums_def_le by blast
       
   350 
       
   351 lemma abs_convergent_prod_imp_convergent_prod:
       
   352   fixes f :: "nat \<Rightarrow> 'a :: {real_normed_div_algebra,complete_space,comm_ring_1}"
       
   353   assumes "abs_convergent_prod f"
       
   354   shows   "convergent_prod f"
       
   355 proof -
       
   356   from assms have "eventually (\<lambda>n. f n \<noteq> 0) sequentially"
       
   357     by (rule abs_convergent_prod_imp_ev_nonzero)
       
   358   then obtain N where N: "f n \<noteq> 0" if "n \<ge> N" for n 
       
   359     by (auto simp: eventually_at_top_linorder)
       
   360   let ?P = "\<lambda>n. \<Prod>i\<le>n. f (i + N)" and ?Q = "\<lambda>n. \<Prod>i\<le>n. 1 + norm (f (i + N) - 1)"
       
   361 
       
   362   have "Cauchy ?P"
       
   363   proof (rule CauchyI', goal_cases)
       
   364     case (1 \<epsilon>)
       
   365     from assms have "abs_convergent_prod (\<lambda>n. f (n + N))"
       
   366       by (rule abs_convergent_prod_ignore_initial_segment)
       
   367     hence "Cauchy ?Q"
       
   368       unfolding abs_convergent_prod_def
       
   369       by (intro convergent_Cauchy convergent_prod_imp_convergent)
       
   370     from CauchyD[OF this 1] obtain M where M: "norm (?Q m - ?Q n) < \<epsilon>" if "m \<ge> M" "n \<ge> M" for m n
       
   371       by blast
       
   372     show ?case
       
   373     proof (rule exI[of _ M], safe, goal_cases)
       
   374       case (1 m n)
       
   375       have "dist (?P m) (?P n) = norm (?P n - ?P m)"
       
   376         by (simp add: dist_norm norm_minus_commute)
       
   377       also from 1 have "{..n} = {..m} \<union> {m<..n}" by auto
       
   378       hence "norm (?P n - ?P m) = norm (?P m * (\<Prod>k\<in>{m<..n}. f (k + N)) - ?P m)"
       
   379         by (subst prod.union_disjoint [symmetric]) (auto simp: algebra_simps)
       
   380       also have "\<dots> = norm (?P m * ((\<Prod>k\<in>{m<..n}. f (k + N)) - 1))"
       
   381         by (simp add: algebra_simps)
       
   382       also have "\<dots> = (\<Prod>k\<le>m. norm (f (k + N))) * norm ((\<Prod>k\<in>{m<..n}. f (k + N)) - 1)"
       
   383         by (simp add: norm_mult prod_norm)
       
   384       also have "\<dots> \<le> ?Q m * ((\<Prod>k\<in>{m<..n}. 1 + norm (f (k + N) - 1)) - 1)"
       
   385         using norm_prod_minus1_le_prod_minus1[of "\<lambda>k. f (k + N) - 1" "{m<..n}"]
       
   386               norm_triangle_ineq[of 1 "f k - 1" for k]
       
   387         by (intro mult_mono prod_mono ballI conjI norm_prod_minus1_le_prod_minus1 prod_nonneg) auto
       
   388       also have "\<dots> = ?Q m * (\<Prod>k\<in>{m<..n}. 1 + norm (f (k + N) - 1)) - ?Q m"
       
   389         by (simp add: algebra_simps)
       
   390       also have "?Q m * (\<Prod>k\<in>{m<..n}. 1 + norm (f (k + N) - 1)) = 
       
   391                    (\<Prod>k\<in>{..m}\<union>{m<..n}. 1 + norm (f (k + N) - 1))"
       
   392         by (rule prod.union_disjoint [symmetric]) auto
       
   393       also from 1 have "{..m}\<union>{m<..n} = {..n}" by auto
       
   394       also have "?Q n - ?Q m \<le> norm (?Q n - ?Q m)" by simp
       
   395       also from 1 have "\<dots> < \<epsilon>" by (intro M) auto
       
   396       finally show ?case .
       
   397     qed
       
   398   qed
       
   399   hence conv: "convergent ?P" by (rule Cauchy_convergent)
       
   400   then obtain L where L: "?P \<longlonglongrightarrow> L"
       
   401     by (auto simp: convergent_def)
       
   402 
       
   403   have "L \<noteq> 0"
       
   404   proof
       
   405     assume [simp]: "L = 0"
       
   406     from tendsto_norm[OF L] have limit: "(\<lambda>n. \<Prod>k\<le>n. norm (f (k + N))) \<longlonglongrightarrow> 0" 
       
   407       by (simp add: prod_norm)
       
   408 
       
   409     from assms have "(\<lambda>n. f (n + N)) \<longlonglongrightarrow> 1"
       
   410       by (intro abs_convergent_prod_imp_LIMSEQ abs_convergent_prod_ignore_initial_segment)
       
   411     hence "eventually (\<lambda>n. norm (f (n + N) - 1) < 1) sequentially"
       
   412       by (auto simp: tendsto_iff dist_norm)
       
   413     then obtain M0 where M0: "norm (f (n + N) - 1) < 1" if "n \<ge> M0" for n
       
   414       by (auto simp: eventually_at_top_linorder)
       
   415 
       
   416     {
       
   417       fix M assume M: "M \<ge> M0"
       
   418       with M0 have M: "norm (f (n + N) - 1) < 1" if "n \<ge> M" for n using that by simp
       
   419 
       
   420       have "(\<lambda>n. \<Prod>k\<le>n. 1 - norm (f (k+M+N) - 1)) \<longlonglongrightarrow> 0"
       
   421       proof (rule tendsto_sandwich)
       
   422         show "eventually (\<lambda>n. (\<Prod>k\<le>n. 1 - norm (f (k+M+N) - 1)) \<ge> 0) sequentially"
       
   423           using M by (intro always_eventually prod_nonneg allI ballI) (auto intro: less_imp_le)
       
   424         have "norm (1::'a) - norm (f (i + M + N) - 1) \<le> norm (f (i + M + N))" for i
       
   425           using norm_triangle_ineq3[of "f (i + M + N)" 1] by simp
       
   426         thus "eventually (\<lambda>n. (\<Prod>k\<le>n. 1 - norm (f (k+M+N) - 1)) \<le> (\<Prod>k\<le>n. norm (f (k+M+N)))) at_top"
       
   427           using M by (intro always_eventually allI prod_mono ballI conjI) (auto intro: less_imp_le)
       
   428         
       
   429         define C where "C = (\<Prod>k<M. norm (f (k + N)))"
       
   430         from N have [simp]: "C \<noteq> 0" by (auto simp: C_def)
       
   431         from L have "(\<lambda>n. norm (\<Prod>k\<le>n+M. f (k + N))) \<longlonglongrightarrow> 0"
       
   432           by (intro LIMSEQ_ignore_initial_segment) (simp add: tendsto_norm_zero_iff)
       
   433         also have "(\<lambda>n. norm (\<Prod>k\<le>n+M. f (k + N))) = (\<lambda>n. C * (\<Prod>k\<le>n. norm (f (k + M + N))))"
       
   434         proof (rule ext, goal_cases)
       
   435           case (1 n)
       
   436           have "{..n+M} = {..<M} \<union> {M..n+M}" by auto
       
   437           also have "norm (\<Prod>k\<in>\<dots>. f (k + N)) = C * norm (\<Prod>k=M..n+M. f (k + N))"
       
   438             unfolding C_def by (subst prod.union_disjoint) (auto simp: norm_mult prod_norm)
       
   439           also have "(\<Prod>k=M..n+M. f (k + N)) = (\<Prod>k\<le>n. f (k + N + M))"
       
   440             by (intro prod.reindex_bij_witness[of _ "\<lambda>i. i + M" "\<lambda>i. i - M"]) auto
       
   441           finally show ?case by (simp add: add_ac prod_norm)
       
   442         qed
       
   443         finally have "(\<lambda>n. C * (\<Prod>k\<le>n. norm (f (k + M + N))) / C) \<longlonglongrightarrow> 0 / C"
       
   444           by (intro tendsto_divide tendsto_const) auto
       
   445         thus "(\<lambda>n. \<Prod>k\<le>n. norm (f (k + M + N))) \<longlonglongrightarrow> 0" by simp
       
   446       qed simp_all
       
   447 
       
   448       have "1 - (\<Sum>i. norm (f (i + M + N) - 1)) \<le> 0"
       
   449       proof (rule tendsto_le)
       
   450         show "eventually (\<lambda>n. 1 - (\<Sum>k\<le>n. norm (f (k+M+N) - 1)) \<le> 
       
   451                                 (\<Prod>k\<le>n. 1 - norm (f (k+M+N) - 1))) at_top"
       
   452           using M by (intro always_eventually allI weierstrass_prod_ineq) (auto intro: less_imp_le)
       
   453         show "(\<lambda>n. \<Prod>k\<le>n. 1 - norm (f (k+M+N) - 1)) \<longlonglongrightarrow> 0" by fact
       
   454         show "(\<lambda>n. 1 - (\<Sum>k\<le>n. norm (f (k + M + N) - 1)))
       
   455                   \<longlonglongrightarrow> 1 - (\<Sum>i. norm (f (i + M + N) - 1))"
       
   456           by (intro tendsto_intros summable_LIMSEQ' summable_ignore_initial_segment 
       
   457                 abs_convergent_prod_imp_summable assms)
       
   458       qed simp_all
       
   459       hence "(\<Sum>i. norm (f (i + M + N) - 1)) \<ge> 1" by simp
       
   460       also have "\<dots> + (\<Sum>i<M. norm (f (i + N) - 1)) = (\<Sum>i. norm (f (i + N) - 1))"
       
   461         by (intro suminf_split_initial_segment [symmetric] summable_ignore_initial_segment
       
   462               abs_convergent_prod_imp_summable assms)
       
   463       finally have "1 + (\<Sum>i<M. norm (f (i + N) - 1)) \<le> (\<Sum>i. norm (f (i + N) - 1))" by simp
       
   464     } note * = this
       
   465 
       
   466     have "1 + (\<Sum>i. norm (f (i + N) - 1)) \<le> (\<Sum>i. norm (f (i + N) - 1))"
       
   467     proof (rule tendsto_le)
       
   468       show "(\<lambda>M. 1 + (\<Sum>i<M. norm (f (i + N) - 1))) \<longlonglongrightarrow> 1 + (\<Sum>i. norm (f (i + N) - 1))"
       
   469         by (intro tendsto_intros summable_LIMSEQ summable_ignore_initial_segment 
       
   470                 abs_convergent_prod_imp_summable assms)
       
   471       show "eventually (\<lambda>M. 1 + (\<Sum>i<M. norm (f (i + N) - 1)) \<le> (\<Sum>i. norm (f (i + N) - 1))) at_top"
       
   472         using eventually_ge_at_top[of M0] by eventually_elim (use * in auto)
       
   473     qed simp_all
       
   474     thus False by simp
       
   475   qed
       
   476   with L show ?thesis by (auto simp: convergent_prod_def)
       
   477 qed
       
   478 
       
   479 end