src/HOL/Algebra/Exponent.thy
changeset 35848 5443079512ea
parent 32946 22664da2923b
child 35849 b5522b51cb1e
equal deleted inserted replaced
35847:19f1f7066917 35848:5443079512ea
    10 
    10 
    11 section {*Sylow's Theorem*}
    11 section {*Sylow's Theorem*}
    12 
    12 
    13 subsection {*The Combinatorial Argument Underlying the First Sylow Theorem*}
    13 subsection {*The Combinatorial Argument Underlying the First Sylow Theorem*}
    14 
    14 
    15 definition exponent :: "nat => nat => nat" where
    15 definition
    16 "exponent p s == if prime p then (GREATEST r. p^r dvd s) else 0"
    16   exponent :: "nat => nat => nat"
       
    17   where "exponent p s = (if prime p then (GREATEST r. p^r dvd s) else 0)"
    17 
    18 
    18 
    19 
    19 text{*Prime Theorems*}
    20 text{*Prime Theorems*}
    20 
    21 
    21 lemma prime_imp_one_less: "prime p ==> Suc 0 < p"
    22 lemma prime_imp_one_less: "prime p ==> Suc 0 < p"