src/HOL/Wellfounded.thy
changeset 61952 546958347e05
parent 61943 7fba644ed827
child 63088 f2177f5d2aed
equal deleted inserted replaced
61951:cbd310584cff 61952:546958347e05
   303   done
   303   done
   304 
   304 
   305 lemma wf_Union: 
   305 lemma wf_Union: 
   306  "[| ALL r:R. wf r;  
   306  "[| ALL r:R. wf r;  
   307      ALL r:R. ALL s:R. r ~= s --> Domain r Int Range s = {}  
   307      ALL r:R. ALL s:R. r ~= s --> Domain r Int Range s = {}  
   308   |] ==> wf(Union R)"
   308   |] ==> wf (\<Union> R)"
   309   using wf_UN[of R "\<lambda>i. i"] by simp
   309   using wf_UN[of R "\<lambda>i. i"] by simp
   310 
   310 
   311 (*Intuition: we find an (R u S)-min element of a nonempty subset A
   311 (*Intuition: we find an (R u S)-min element of a nonempty subset A
   312              by case distinction.
   312              by case distinction.
   313   1. There is a step a -R-> b with a,b : A.
   313   1. There is a step a -R-> b with a,b : A.