src/HOL/Data_Structures/AVL_Set.thy
changeset 68313 56c57e91edf9
parent 68023 75130777ece4
child 68342 b80734daf7ed
equal deleted inserted replaced
68312:e9b5f25f6712 68313:56c57e91edf9
   453 qed simp_all
   453 qed simp_all
   454 
   454 
   455 
   455 
   456 subsection \<open>Height-Size Relation\<close>
   456 subsection \<open>Height-Size Relation\<close>
   457 
   457 
   458 text \<open>By Daniel St\"uwe\<close>
   458 text \<open>By Daniel St\"uwe, Manuel Eberl and Peter Lammich.\<close>
   459 
   459 
   460 fun fib_tree :: "nat \<Rightarrow> unit avl_tree" where
   460 lemma height_invers: 
   461 "fib_tree 0 = Leaf" |
       
   462 "fib_tree (Suc 0) = Node 1 Leaf () Leaf" |
       
   463 "fib_tree (Suc(Suc n)) = Node (Suc(Suc(n))) (fib_tree (Suc n)) () (fib_tree n)"
       
   464 
       
   465 lemma [simp]: "ht (fib_tree h) = h"
       
   466 by (induction h rule: "fib_tree.induct") auto
       
   467 
       
   468 lemma [simp]: "height (fib_tree h) = h"
       
   469 by (induction h rule: "fib_tree.induct") auto
       
   470 
       
   471 lemma "avl(fib_tree h)"          
       
   472 by (induction h rule: "fib_tree.induct") auto
       
   473 
       
   474 lemma fib_tree_size1: "size1 (fib_tree h) = fib (h+2)"
       
   475 by (induction h rule: fib_tree.induct) auto
       
   476 
       
   477 lemma height_invers[simp]: 
       
   478   "(height t = 0) = (t = Leaf)"
   461   "(height t = 0) = (t = Leaf)"
   479   "avl t \<Longrightarrow> (height t = Suc h) = (\<exists> l a r . t = Node (Suc h) l a r)"
   462   "avl t \<Longrightarrow> (height t = Suc h) = (\<exists> l a r . t = Node (Suc h) l a r)"
   480 by (induction t) auto
   463 by (induction t) auto
   481 
   464 
   482 lemma fib_Suc_lt: "fib n \<le> fib (Suc n)"
   465 text \<open>Any AVL tree of height \<open>h\<close> has at least \<open>fib (h+2)\<close> leaves:\<close>
   483 by (induction n rule: fib.induct) auto
   466 
   484 
   467 lemma avl_fib_bound: "avl t \<Longrightarrow> height t = h \<Longrightarrow> fib (h+2) \<le> size1 t"
   485 lemma fib_mono: "n \<le> m \<Longrightarrow> fib n \<le> fib m"
   468 proof (induction h arbitrary: t rule: fib.induct)
   486 proof (induction n arbitrary: m rule: fib.induct )
   469   case 1 thus ?case by (simp add: height_invers)
   487   case (2 m)
   470 next
   488   thus ?case using fib_neq_0_nat[of m] by auto
   471   case 2 thus ?case by (cases t) (auto simp: height_invers)
   489 next
   472 next
   490   case (3 n m)
   473   case (3 h)
   491   from 3 obtain m' where "m = Suc (Suc m')"
   474   from "3.prems" obtain l a r where
   492     by (metis le_Suc_ex plus_nat.simps(2)) 
   475     [simp]: "t = Node (Suc(Suc h)) l a r" "avl l" "avl r"
   493   thus ?case using 3(1)[of "Suc m'"] 3(2)[of m'] 3(3) by auto
   476     and C: "
   494 qed simp
   477       height r = Suc h \<and> height l = Suc h
   495 
   478     \<or> height r = Suc h \<and> height l = h
   496 lemma size1_fib_tree_mono:
   479     \<or> height r = h \<and> height l = Suc h" (is "?C1 \<or> ?C2 \<or> ?C3")
   497   assumes "n \<le> m"
   480     by (cases t) (simp, fastforce)
   498   shows   "size1 (fib_tree n) \<le> size1 (fib_tree m)"
   481   {
   499 using fib_tree_size1 fib_mono[OF assms] fib_mono[of "Suc n"] add_le_mono assms by fastforce 
   482     assume ?C1
   500 
   483     with "3.IH"(1)
   501 lemma fib_tree_minimal: "avl t \<Longrightarrow> size1 (fib_tree (ht t)) \<le> size1 t"
   484     have "fib (h + 3) \<le> size1 l" "fib (h + 3) \<le> size1 r"
   502 proof (induction "ht t" arbitrary: t rule: fib_tree.induct)
   485       by (simp_all add: eval_nat_numeral)
   503   case (2 t)
   486     hence ?case by (auto simp: eval_nat_numeral)
   504   from 2 obtain l a r where "t = Node (Suc 0) l a r" by (cases t) auto
   487   } moreover {
   505   with 2 show ?case by auto
   488     assume ?C2
   506 next
   489     hence ?case using "3.IH"(1)[of r] "3.IH"(2)[of l] by auto
   507   case (3 h t)
   490   } moreover {
   508   note [simp] = 3(3)[symmetric] 
   491     assume ?C3
   509   from 3 obtain l a r where [simp]: "t = Node (Suc (Suc h)) l a r" by (cases t) auto
   492     hence ?case using "3.IH"(1)[of l] "3.IH"(2)[of r] by auto
   510   show ?case proof (cases rule: linorder_cases[of "ht l" "ht r"]) 
   493   } ultimately show ?case using C by blast
   511     case equal
   494 qed
   512     with 3(3,4) have ht: "ht l = Suc h" "ht r = Suc h" by auto
   495 
   513     with 3 have "size1 (fib_tree (ht l)) \<le> size1 l" by auto moreover
   496 lemma fib_alt_induct [consumes 1, case_names 1 2 rec]:
   514     from 3(1)[of r] 3(3,4) ht(2) have "size1 (fib_tree (ht r)) \<le> size1 r" by auto ultimately
   497   assumes "n > 0" "P 1" "P 2" "\<And>n. n > 0 \<Longrightarrow> P n \<Longrightarrow> P (Suc n) \<Longrightarrow> P (Suc (Suc n))"
   515     show ?thesis using ht size1_fib_tree_mono[of h "Suc h"] by auto
   498   shows   "P n"
   516   next
   499   using assms(1)
   517     case greater
   500 proof (induction n rule: fib.induct)
   518     with 3(3,4) have ht: "ht l = Suc h"  "ht r = h" by auto
   501   case (3 n)
   519     from ht 3(1,2,4) have "size1 (fib_tree (Suc h)) \<le> size1 l" by auto moreover
   502   thus ?case using assms by (cases n) (auto simp: eval_nat_numeral)
   520     from ht 3(1,2,4) have "size1 (fib_tree h) \<le> size1 r" by auto ultimately
   503 qed (insert assms, auto)
   521     show ?thesis by auto
   504 
   522   next
   505 text \<open>An exponential lower bound for @{const fib}:\<close>
   523     case less (* analogously *)
   506 
   524     with 3 have ht: "ht l = h"  "Suc h = ht r" by auto
   507 lemma fib_lowerbound:
   525     from ht 3 have "size1 (fib_tree h) \<le> size1 l" by auto moreover
   508   defines "\<phi> \<equiv> (1 + sqrt 5) / 2"
   526     from ht 3 have "size1 (fib_tree (Suc h)) \<le> size1 r" by auto ultimately
   509   defines "c \<equiv> 1 / \<phi> ^ 2"
   527     show ?thesis by auto
   510   assumes "n > 0"
   528   qed
   511   shows   "real (fib n) \<ge> c * \<phi> ^ n"
   529 qed auto
   512 proof -
   530 
   513   have "\<phi> > 1" by (simp add: \<phi>_def)
   531 theorem avl_size_bound: "avl t \<Longrightarrow> fib(height t + 2) \<le> size1 t" 
   514   hence "c > 0" by (simp add: c_def)
   532 using fib_tree_minimal fib_tree_size1 by fastforce
   515   from \<open>n > 0\<close> show ?thesis
       
   516   proof (induction n rule: fib_alt_induct)
       
   517     case (rec n)
       
   518     have "c * \<phi> ^ Suc (Suc n) = \<phi> ^ 2 * (c * \<phi> ^ n)"
       
   519       by (simp add: field_simps power2_eq_square)
       
   520     also have "\<dots> \<le> (\<phi> + 1) * (c * \<phi> ^ n)"
       
   521       by (rule mult_right_mono) (insert \<open>c > 0\<close>, simp_all add: \<phi>_def power2_eq_square field_simps)
       
   522     also have "\<dots> = c * \<phi> ^ Suc n + c * \<phi> ^ n"
       
   523       by (simp add: field_simps)
       
   524     also have "\<dots> \<le> real (fib (Suc n)) + real (fib n)"
       
   525       by (intro add_mono rec.IH)
       
   526     finally show ?case by simp
       
   527   qed (insert \<open>\<phi> > 1\<close>, simp_all add: c_def power2_eq_square eval_nat_numeral)
       
   528 qed
       
   529 
       
   530 text \<open>The size of an AVL tree is (at least) exponential in its height:\<close>
       
   531 
       
   532 lemma avl_lowerbound:
       
   533   defines "\<phi> \<equiv> (1 + sqrt 5) / 2"
       
   534   assumes "avl t"
       
   535   shows   "real (size1 t) \<ge> \<phi> ^ (height t)"
       
   536 proof -
       
   537   have "\<phi> > 0" by(simp add: \<phi>_def add_pos_nonneg)
       
   538   hence "\<phi> ^ height t = (1 / \<phi> ^ 2) * \<phi> ^ (height t + 2)"
       
   539     by(simp add: field_simps power2_eq_square)
       
   540   also have "\<dots> \<le> real (fib (height t + 2))"
       
   541     using fib_lowerbound[of "height t + 2"] by(simp add: \<phi>_def)
       
   542   also have "\<dots> \<le> real (size1 t)"
       
   543     using avl_fib_bound[of t "height t"] assms by simp
       
   544   finally show ?thesis .
       
   545 qed
   533 
   546 
   534 end
   547 end