doc-src/Ref/substitution.tex
changeset 9524 5721615da108
parent 8136 8c65f3ca13f2
child 9695 ec7d7f877712
equal deleted inserted replaced
9523:232b09dba0fe 9524:5721615da108
   127   structure Simplifier : SIMPLIFIER
   127   structure Simplifier : SIMPLIFIER
   128   val dest_Trueprop    : term -> term
   128   val dest_Trueprop    : term -> term
   129   val dest_eq          : term -> term*term*typ
   129   val dest_eq          : term -> term*term*typ
   130   val dest_imp         : term -> term*term
   130   val dest_imp         : term -> term*term
   131   val eq_reflection    : thm         (* a=b ==> a==b *)
   131   val eq_reflection    : thm         (* a=b ==> a==b *)
       
   132   val rev_eq_reflection: thm         (* a==b ==> a=b *)
   132   val imp_intr         : thm         (*(P ==> Q) ==> P-->Q *)
   133   val imp_intr         : thm         (*(P ==> Q) ==> P-->Q *)
   133   val rev_mp           : thm         (* [| P;  P-->Q |] ==> Q *)
   134   val rev_mp           : thm         (* [| P;  P-->Q |] ==> Q *)
   134   val subst            : thm         (* [| a=b;  P(a) |] ==> P(b) *)
   135   val subst            : thm         (* [| a=b;  P(a) |] ==> P(b) *)
   135   val sym              : thm         (* a=b ==> b=a *)
   136   val sym              : thm         (* a=b ==> b=a *)
   136   val thin_refl        : thm         (* [|x=x; P|] ==> P *)
   137   val thin_refl        : thm         (* [|x=x; P|] ==> P *)
   152 \item[\ttindexbold{dest_imp}] should return the pair~$(P,Q)$ when applied to
   153 \item[\ttindexbold{dest_imp}] should return the pair~$(P,Q)$ when applied to
   153   the \ML{} term that represents the implication $P\imp Q$.  For other terms,
   154   the \ML{} term that represents the implication $P\imp Q$.  For other terms,
   154   it should raise an exception.
   155   it should raise an exception.
   155 
   156 
   156 \item[\tdxbold{eq_reflection}] is the theorem discussed
   157 \item[\tdxbold{eq_reflection}] is the theorem discussed
   157   in~\S\ref{sec:setting-up-simp}. 
   158   in~\S\ref{sec:setting-up-simp}.
       
   159   
       
   160 \item[\tdxbold{rev_eq_reflection}] is the reverse of \texttt{eq_reflection}.
   158 
   161 
   159 \item[\tdxbold{imp_intr}] should be the implies introduction
   162 \item[\tdxbold{imp_intr}] should be the implies introduction
   160 rule $(\Var{P}\Imp\Var{Q})\Imp \Var{P}\imp\Var{Q}$.
   163 rule $(\Var{P}\Imp\Var{Q})\Imp \Var{P}\imp\Var{Q}$.
   161 
   164 
   162 \item[\tdxbold{rev_mp}] should be the `reversed' implies elimination
   165 \item[\tdxbold{rev_mp}] should be the `reversed' implies elimination