|
1 (* Title: Poly_Deriv.thy |
|
2 Author: Amine Chaieb |
|
3 Ported to new Polynomial library by Brian Huffman |
|
4 *) |
|
5 |
|
6 header{* Polynomials and Differentiation *} |
|
7 |
|
8 theory Poly_Deriv |
|
9 imports Deriv Polynomial |
|
10 begin |
|
11 |
|
12 subsection {* Derivatives of univariate polynomials *} |
|
13 |
|
14 definition |
|
15 pderiv :: "'a::real_normed_field poly \<Rightarrow> 'a poly" where |
|
16 "pderiv = poly_rec 0 (\<lambda>a p p'. p + pCons 0 p')" |
|
17 |
|
18 lemma pderiv_0 [simp]: "pderiv 0 = 0" |
|
19 unfolding pderiv_def by (simp add: poly_rec_0) |
|
20 |
|
21 lemma pderiv_pCons: "pderiv (pCons a p) = p + pCons 0 (pderiv p)" |
|
22 unfolding pderiv_def by (simp add: poly_rec_pCons) |
|
23 |
|
24 lemma coeff_pderiv: "coeff (pderiv p) n = of_nat (Suc n) * coeff p (Suc n)" |
|
25 apply (induct p arbitrary: n, simp) |
|
26 apply (simp add: pderiv_pCons coeff_pCons algebra_simps split: nat.split) |
|
27 done |
|
28 |
|
29 lemma pderiv_eq_0_iff: "pderiv p = 0 \<longleftrightarrow> degree p = 0" |
|
30 apply (rule iffI) |
|
31 apply (cases p, simp) |
|
32 apply (simp add: expand_poly_eq coeff_pderiv del: of_nat_Suc) |
|
33 apply (simp add: expand_poly_eq coeff_pderiv coeff_eq_0) |
|
34 done |
|
35 |
|
36 lemma degree_pderiv: "degree (pderiv p) = degree p - 1" |
|
37 apply (rule order_antisym [OF degree_le]) |
|
38 apply (simp add: coeff_pderiv coeff_eq_0) |
|
39 apply (cases "degree p", simp) |
|
40 apply (rule le_degree) |
|
41 apply (simp add: coeff_pderiv del: of_nat_Suc) |
|
42 apply (rule subst, assumption) |
|
43 apply (rule leading_coeff_neq_0, clarsimp) |
|
44 done |
|
45 |
|
46 lemma pderiv_singleton [simp]: "pderiv [:a:] = 0" |
|
47 by (simp add: pderiv_pCons) |
|
48 |
|
49 lemma pderiv_add: "pderiv (p + q) = pderiv p + pderiv q" |
|
50 by (rule poly_ext, simp add: coeff_pderiv algebra_simps) |
|
51 |
|
52 lemma pderiv_minus: "pderiv (- p) = - pderiv p" |
|
53 by (rule poly_ext, simp add: coeff_pderiv) |
|
54 |
|
55 lemma pderiv_diff: "pderiv (p - q) = pderiv p - pderiv q" |
|
56 by (rule poly_ext, simp add: coeff_pderiv algebra_simps) |
|
57 |
|
58 lemma pderiv_smult: "pderiv (smult a p) = smult a (pderiv p)" |
|
59 by (rule poly_ext, simp add: coeff_pderiv algebra_simps) |
|
60 |
|
61 lemma pderiv_mult: "pderiv (p * q) = p * pderiv q + q * pderiv p" |
|
62 apply (induct p) |
|
63 apply simp |
|
64 apply (simp add: pderiv_add pderiv_smult pderiv_pCons algebra_simps) |
|
65 done |
|
66 |
|
67 lemma pderiv_power_Suc: |
|
68 "pderiv (p ^ Suc n) = smult (of_nat (Suc n)) (p ^ n) * pderiv p" |
|
69 apply (induct n) |
|
70 apply simp |
|
71 apply (subst power_Suc) |
|
72 apply (subst pderiv_mult) |
|
73 apply (erule ssubst) |
|
74 apply (simp add: smult_add_left algebra_simps) |
|
75 done |
|
76 |
|
77 lemma DERIV_cmult2: "DERIV f x :> D ==> DERIV (%x. (f x) * c :: real) x :> D * c" |
|
78 by (simp add: DERIV_cmult mult_commute [of _ c]) |
|
79 |
|
80 lemma DERIV_pow2: "DERIV (%x. x ^ Suc n) x :> real (Suc n) * (x ^ n)" |
|
81 by (rule lemma_DERIV_subst, rule DERIV_pow, simp) |
|
82 declare DERIV_pow2 [simp] DERIV_pow [simp] |
|
83 |
|
84 lemma DERIV_add_const: "DERIV f x :> D ==> DERIV (%x. a + f x :: 'a::real_normed_field) x :> D" |
|
85 by (rule lemma_DERIV_subst, rule DERIV_add, auto) |
|
86 |
|
87 lemma poly_DERIV[simp]: "DERIV (%x. poly p x) x :> poly (pderiv p) x" |
|
88 apply (induct p) |
|
89 apply simp |
|
90 apply (simp add: pderiv_pCons) |
|
91 apply (rule lemma_DERIV_subst) |
|
92 apply (rule DERIV_add DERIV_mult DERIV_const DERIV_ident | assumption)+ |
|
93 apply simp |
|
94 done |
|
95 |
|
96 text{* Consequences of the derivative theorem above*} |
|
97 |
|
98 lemma poly_differentiable[simp]: "(%x. poly p x) differentiable (x::real)" |
|
99 apply (simp add: differentiable_def) |
|
100 apply (blast intro: poly_DERIV) |
|
101 done |
|
102 |
|
103 lemma poly_isCont[simp]: "isCont (%x. poly p x) (x::real)" |
|
104 by (rule poly_DERIV [THEN DERIV_isCont]) |
|
105 |
|
106 lemma poly_IVT_pos: "[| a < b; poly p (a::real) < 0; 0 < poly p b |] |
|
107 ==> \<exists>x. a < x & x < b & (poly p x = 0)" |
|
108 apply (cut_tac f = "%x. poly p x" and a = a and b = b and y = 0 in IVT_objl) |
|
109 apply (auto simp add: order_le_less) |
|
110 done |
|
111 |
|
112 lemma poly_IVT_neg: "[| (a::real) < b; 0 < poly p a; poly p b < 0 |] |
|
113 ==> \<exists>x. a < x & x < b & (poly p x = 0)" |
|
114 by (insert poly_IVT_pos [where p = "- p" ]) simp |
|
115 |
|
116 lemma poly_MVT: "(a::real) < b ==> |
|
117 \<exists>x. a < x & x < b & (poly p b - poly p a = (b - a) * poly (pderiv p) x)" |
|
118 apply (drule_tac f = "poly p" in MVT, auto) |
|
119 apply (rule_tac x = z in exI) |
|
120 apply (auto simp add: real_mult_left_cancel poly_DERIV [THEN DERIV_unique]) |
|
121 done |
|
122 |
|
123 text{*Lemmas for Derivatives*} |
|
124 |
|
125 lemma order_unique_lemma: |
|
126 fixes p :: "'a::idom poly" |
|
127 assumes "[:-a, 1:] ^ n dvd p \<and> \<not> [:-a, 1:] ^ Suc n dvd p" |
|
128 shows "n = order a p" |
|
129 unfolding Polynomial.order_def |
|
130 apply (rule Least_equality [symmetric]) |
|
131 apply (rule assms [THEN conjunct2]) |
|
132 apply (erule contrapos_np) |
|
133 apply (rule power_le_dvd) |
|
134 apply (rule assms [THEN conjunct1]) |
|
135 apply simp |
|
136 done |
|
137 |
|
138 lemma lemma_order_pderiv1: |
|
139 "pderiv ([:- a, 1:] ^ Suc n * q) = [:- a, 1:] ^ Suc n * pderiv q + |
|
140 smult (of_nat (Suc n)) (q * [:- a, 1:] ^ n)" |
|
141 apply (simp only: pderiv_mult pderiv_power_Suc) |
|
142 apply (simp del: power_poly_Suc of_nat_Suc add: pderiv_pCons) |
|
143 done |
|
144 |
|
145 lemma dvd_add_cancel1: |
|
146 fixes a b c :: "'a::comm_ring_1" |
|
147 shows "a dvd b + c \<Longrightarrow> a dvd b \<Longrightarrow> a dvd c" |
|
148 by (drule (1) Ring_and_Field.dvd_diff, simp) |
|
149 |
|
150 lemma lemma_order_pderiv [rule_format]: |
|
151 "\<forall>p q a. 0 < n & |
|
152 pderiv p \<noteq> 0 & |
|
153 p = [:- a, 1:] ^ n * q & ~ [:- a, 1:] dvd q |
|
154 --> n = Suc (order a (pderiv p))" |
|
155 apply (cases "n", safe, rename_tac n p q a) |
|
156 apply (rule order_unique_lemma) |
|
157 apply (rule conjI) |
|
158 apply (subst lemma_order_pderiv1) |
|
159 apply (rule dvd_add) |
|
160 apply (rule dvd_mult2) |
|
161 apply (rule le_imp_power_dvd, simp) |
|
162 apply (rule dvd_smult) |
|
163 apply (rule dvd_mult) |
|
164 apply (rule dvd_refl) |
|
165 apply (subst lemma_order_pderiv1) |
|
166 apply (erule contrapos_nn) back |
|
167 apply (subgoal_tac "[:- a, 1:] ^ Suc n dvd q * [:- a, 1:] ^ n") |
|
168 apply (simp del: mult_pCons_left) |
|
169 apply (drule dvd_add_cancel1) |
|
170 apply (simp del: mult_pCons_left) |
|
171 apply (drule dvd_smult_cancel, simp del: of_nat_Suc) |
|
172 apply assumption |
|
173 done |
|
174 |
|
175 lemma order_decomp: |
|
176 "p \<noteq> 0 |
|
177 ==> \<exists>q. p = [:-a, 1:] ^ (order a p) * q & |
|
178 ~([:-a, 1:] dvd q)" |
|
179 apply (drule order [where a=a]) |
|
180 apply (erule conjE) |
|
181 apply (erule dvdE) |
|
182 apply (rule exI) |
|
183 apply (rule conjI, assumption) |
|
184 apply (erule contrapos_nn) |
|
185 apply (erule ssubst) back |
|
186 apply (subst power_Suc2) |
|
187 apply (erule mult_dvd_mono [OF dvd_refl]) |
|
188 done |
|
189 |
|
190 lemma order_pderiv: "[| pderiv p \<noteq> 0; order a p \<noteq> 0 |] |
|
191 ==> (order a p = Suc (order a (pderiv p)))" |
|
192 apply (case_tac "p = 0", simp) |
|
193 apply (drule_tac a = a and p = p in order_decomp) |
|
194 using neq0_conv |
|
195 apply (blast intro: lemma_order_pderiv) |
|
196 done |
|
197 |
|
198 lemma order_mult: "p * q \<noteq> 0 \<Longrightarrow> order a (p * q) = order a p + order a q" |
|
199 proof - |
|
200 def i \<equiv> "order a p" |
|
201 def j \<equiv> "order a q" |
|
202 def t \<equiv> "[:-a, 1:]" |
|
203 have t_dvd_iff: "\<And>u. t dvd u \<longleftrightarrow> poly u a = 0" |
|
204 unfolding t_def by (simp add: dvd_iff_poly_eq_0) |
|
205 assume "p * q \<noteq> 0" |
|
206 then show "order a (p * q) = i + j" |
|
207 apply clarsimp |
|
208 apply (drule order [where a=a and p=p, folded i_def t_def]) |
|
209 apply (drule order [where a=a and p=q, folded j_def t_def]) |
|
210 apply clarify |
|
211 apply (rule order_unique_lemma [symmetric], fold t_def) |
|
212 apply (erule dvdE)+ |
|
213 apply (simp add: power_add t_dvd_iff) |
|
214 done |
|
215 qed |
|
216 |
|
217 text{*Now justify the standard squarefree decomposition, i.e. f / gcd(f,f'). *} |
|
218 |
|
219 lemma order_divides: "[:-a, 1:] ^ n dvd p \<longleftrightarrow> p = 0 \<or> n \<le> order a p" |
|
220 apply (cases "p = 0", auto) |
|
221 apply (drule order_2 [where a=a and p=p]) |
|
222 apply (erule contrapos_np) |
|
223 apply (erule power_le_dvd) |
|
224 apply simp |
|
225 apply (erule power_le_dvd [OF order_1]) |
|
226 done |
|
227 |
|
228 lemma poly_squarefree_decomp_order: |
|
229 assumes "pderiv p \<noteq> 0" |
|
230 and p: "p = q * d" |
|
231 and p': "pderiv p = e * d" |
|
232 and d: "d = r * p + s * pderiv p" |
|
233 shows "order a q = (if order a p = 0 then 0 else 1)" |
|
234 proof (rule classical) |
|
235 assume 1: "order a q \<noteq> (if order a p = 0 then 0 else 1)" |
|
236 from `pderiv p \<noteq> 0` have "p \<noteq> 0" by auto |
|
237 with p have "order a p = order a q + order a d" |
|
238 by (simp add: order_mult) |
|
239 with 1 have "order a p \<noteq> 0" by (auto split: if_splits) |
|
240 have "order a (pderiv p) = order a e + order a d" |
|
241 using `pderiv p \<noteq> 0` `pderiv p = e * d` by (simp add: order_mult) |
|
242 have "order a p = Suc (order a (pderiv p))" |
|
243 using `pderiv p \<noteq> 0` `order a p \<noteq> 0` by (rule order_pderiv) |
|
244 have "d \<noteq> 0" using `p \<noteq> 0` `p = q * d` by simp |
|
245 have "([:-a, 1:] ^ (order a (pderiv p))) dvd d" |
|
246 apply (simp add: d) |
|
247 apply (rule dvd_add) |
|
248 apply (rule dvd_mult) |
|
249 apply (simp add: order_divides `p \<noteq> 0` |
|
250 `order a p = Suc (order a (pderiv p))`) |
|
251 apply (rule dvd_mult) |
|
252 apply (simp add: order_divides) |
|
253 done |
|
254 then have "order a (pderiv p) \<le> order a d" |
|
255 using `d \<noteq> 0` by (simp add: order_divides) |
|
256 show ?thesis |
|
257 using `order a p = order a q + order a d` |
|
258 using `order a (pderiv p) = order a e + order a d` |
|
259 using `order a p = Suc (order a (pderiv p))` |
|
260 using `order a (pderiv p) \<le> order a d` |
|
261 by auto |
|
262 qed |
|
263 |
|
264 lemma poly_squarefree_decomp_order2: "[| pderiv p \<noteq> 0; |
|
265 p = q * d; |
|
266 pderiv p = e * d; |
|
267 d = r * p + s * pderiv p |
|
268 |] ==> \<forall>a. order a q = (if order a p = 0 then 0 else 1)" |
|
269 apply (blast intro: poly_squarefree_decomp_order) |
|
270 done |
|
271 |
|
272 lemma order_pderiv2: "[| pderiv p \<noteq> 0; order a p \<noteq> 0 |] |
|
273 ==> (order a (pderiv p) = n) = (order a p = Suc n)" |
|
274 apply (auto dest: order_pderiv) |
|
275 done |
|
276 |
|
277 definition |
|
278 rsquarefree :: "'a::idom poly => bool" where |
|
279 "rsquarefree p = (p \<noteq> 0 & (\<forall>a. (order a p = 0) | (order a p = 1)))" |
|
280 |
|
281 lemma pderiv_iszero: "pderiv p = 0 \<Longrightarrow> \<exists>h. p = [:h:]" |
|
282 apply (simp add: pderiv_eq_0_iff) |
|
283 apply (case_tac p, auto split: if_splits) |
|
284 done |
|
285 |
|
286 lemma rsquarefree_roots: |
|
287 "rsquarefree p = (\<forall>a. ~(poly p a = 0 & poly (pderiv p) a = 0))" |
|
288 apply (simp add: rsquarefree_def) |
|
289 apply (case_tac "p = 0", simp, simp) |
|
290 apply (case_tac "pderiv p = 0") |
|
291 apply simp |
|
292 apply (drule pderiv_iszero, clarify) |
|
293 apply simp |
|
294 apply (rule allI) |
|
295 apply (cut_tac p = "[:h:]" and a = a in order_root) |
|
296 apply simp |
|
297 apply (auto simp add: order_root order_pderiv2) |
|
298 apply (erule_tac x="a" in allE, simp) |
|
299 done |
|
300 |
|
301 lemma poly_squarefree_decomp: |
|
302 assumes "pderiv p \<noteq> 0" |
|
303 and "p = q * d" |
|
304 and "pderiv p = e * d" |
|
305 and "d = r * p + s * pderiv p" |
|
306 shows "rsquarefree q & (\<forall>a. (poly q a = 0) = (poly p a = 0))" |
|
307 proof - |
|
308 from `pderiv p \<noteq> 0` have "p \<noteq> 0" by auto |
|
309 with `p = q * d` have "q \<noteq> 0" by simp |
|
310 have "\<forall>a. order a q = (if order a p = 0 then 0 else 1)" |
|
311 using assms by (rule poly_squarefree_decomp_order2) |
|
312 with `p \<noteq> 0` `q \<noteq> 0` show ?thesis |
|
313 by (simp add: rsquarefree_def order_root) |
|
314 qed |
|
315 |
|
316 end |