src/HOL/Relation.ML
changeset 4673 59d80bacee62
parent 4650 91af1ef45d68
child 4733 2c984ac036f5
equal deleted inserted replaced
4672:9d55bc687e1e 4673:59d80bacee62
     6 
     6 
     7 open Relation;
     7 open Relation;
     8 
     8 
     9 (** Identity relation **)
     9 (** Identity relation **)
    10 
    10 
    11 goalw Relation.thy [id_def] "(a,a) : id";  
    11 goalw thy [id_def] "(a,a) : id";  
    12 by (Blast_tac 1);
    12 by (Blast_tac 1);
    13 qed "idI";
    13 qed "idI";
    14 
    14 
    15 val major::prems = goalw Relation.thy [id_def]
    15 val major::prems = goalw thy [id_def]
    16     "[| p: id;  !!x.[| p = (x,x) |] ==> P  \
    16     "[| p: id;  !!x.[| p = (x,x) |] ==> P  \
    17 \    |] ==>  P";  
    17 \    |] ==>  P";  
    18 by (rtac (major RS CollectE) 1);
    18 by (rtac (major RS CollectE) 1);
    19 by (etac exE 1);
    19 by (etac exE 1);
    20 by (eresolve_tac prems 1);
    20 by (eresolve_tac prems 1);
    21 qed "idE";
    21 qed "idE";
    22 
    22 
    23 goalw Relation.thy [id_def] "(a,b):id = (a=b)";
    23 goalw thy [id_def] "(a,b):id = (a=b)";
    24 by (Blast_tac 1);
    24 by (Blast_tac 1);
    25 qed "pair_in_id_conv";
    25 qed "pair_in_id_conv";
    26 Addsimps [pair_in_id_conv];
    26 Addsimps [pair_in_id_conv];
    27 
    27 
    28 
    28 
    29 (** Composition of two relations **)
    29 (** Composition of two relations **)
    30 
    30 
    31 goalw Relation.thy [comp_def]
    31 goalw thy [comp_def]
    32     "!!r s. [| (a,b):s; (b,c):r |] ==> (a,c) : r O s";
    32     "!!r s. [| (a,b):s; (b,c):r |] ==> (a,c) : r O s";
    33 by (Blast_tac 1);
    33 by (Blast_tac 1);
    34 qed "compI";
    34 qed "compI";
    35 
    35 
    36 (*proof requires higher-level assumptions or a delaying of hyp_subst_tac*)
    36 (*proof requires higher-level assumptions or a delaying of hyp_subst_tac*)
    37 val prems = goalw Relation.thy [comp_def]
    37 val prems = goalw thy [comp_def]
    38     "[| xz : r O s;  \
    38     "[| xz : r O s;  \
    39 \       !!x y z. [| xz = (x,z);  (x,y):s;  (y,z):r |] ==> P \
    39 \       !!x y z. [| xz = (x,z);  (x,y):s;  (y,z):r |] ==> P \
    40 \    |] ==> P";
    40 \    |] ==> P";
    41 by (cut_facts_tac prems 1);
    41 by (cut_facts_tac prems 1);
    42 by (REPEAT (eresolve_tac [CollectE, splitE, exE, conjE] 1 
    42 by (REPEAT (eresolve_tac [CollectE, splitE, exE, conjE] 1 
    43      ORELSE ares_tac prems 1));
    43      ORELSE ares_tac prems 1));
    44 qed "compE";
    44 qed "compE";
    45 
    45 
    46 val prems = goal Relation.thy
    46 val prems = goal thy
    47     "[| (a,c) : r O s;  \
    47     "[| (a,c) : r O s;  \
    48 \       !!y. [| (a,y):s;  (y,c):r |] ==> P \
    48 \       !!y. [| (a,y):s;  (y,c):r |] ==> P \
    49 \    |] ==> P";
    49 \    |] ==> P";
    50 by (rtac compE 1);
    50 by (rtac compE 1);
    51 by (REPEAT (ares_tac prems 1 ORELSE eresolve_tac [Pair_inject,ssubst] 1));
    51 by (REPEAT (ares_tac prems 1 ORELSE eresolve_tac [Pair_inject,ssubst] 1));
    52 qed "compEpair";
    52 qed "compEpair";
    53 
    53 
    54 AddIs [compI, idI];
    54 AddIs [compI, idI];
    55 AddSEs [compE, idE];
    55 AddSEs [compE, idE];
    56 
    56 
    57 goal Relation.thy "!!r s. [| r'<=r; s'<=s |] ==> (r' O s') <= (r O s)";
    57 goal thy "R O id = R";
       
    58 by (Fast_tac 1);
       
    59 qed "R_O_id";
       
    60 
       
    61 goal thy "id O R = R";
       
    62 by (Fast_tac 1);
       
    63 qed "id_O_R";
       
    64 
       
    65 Addsimps [R_O_id,id_O_R];
       
    66 
       
    67 goal thy "!!r s. [| r'<=r; s'<=s |] ==> (r' O s') <= (r O s)";
    58 by (Blast_tac 1);
    68 by (Blast_tac 1);
    59 qed "comp_mono";
    69 qed "comp_mono";
    60 
    70 
    61 goal Relation.thy
    71 goal thy
    62     "!!r s. [| s <= A Times B;  r <= B Times C |] ==> (r O s) <= A Times C";
    72     "!!r s. [| s <= A Times B;  r <= B Times C |] ==> (r O s) <= A Times C";
    63 by (Blast_tac 1);
    73 by (Blast_tac 1);
    64 qed "comp_subset_Sigma";
    74 qed "comp_subset_Sigma";
    65 
    75 
    66 (** Natural deduction for trans(r) **)
    76 (** Natural deduction for trans(r) **)
    67 
    77 
    68 val prems = goalw Relation.thy [trans_def]
    78 val prems = goalw thy [trans_def]
    69     "(!! x y z. [| (x,y):r;  (y,z):r |] ==> (x,z):r) ==> trans(r)";
    79     "(!! x y z. [| (x,y):r;  (y,z):r |] ==> (x,z):r) ==> trans(r)";
    70 by (REPEAT (ares_tac (prems@[allI,impI]) 1));
    80 by (REPEAT (ares_tac (prems@[allI,impI]) 1));
    71 qed "transI";
    81 qed "transI";
    72 
    82 
    73 goalw Relation.thy [trans_def]
    83 goalw thy [trans_def]
    74     "!!r. [| trans(r);  (a,b):r;  (b,c):r |] ==> (a,c):r";
    84     "!!r. [| trans(r);  (a,b):r;  (b,c):r |] ==> (a,c):r";
    75 by (Blast_tac 1);
    85 by (Blast_tac 1);
    76 qed "transD";
    86 qed "transD";
    77 
    87 
    78 (** Natural deduction for r^-1 **)
    88 (** Natural deduction for r^-1 **)
    79 
    89 
    80 goalw Relation.thy [inverse_def] "!!a b r. ((a,b): r^-1) = ((b,a):r)";
    90 goalw thy [inverse_def] "!!a b r. ((a,b): r^-1) = ((b,a):r)";
    81 by (Simp_tac 1);
    91 by (Simp_tac 1);
    82 qed "inverse_iff";
    92 qed "inverse_iff";
    83 
    93 
    84 AddIffs [inverse_iff];
    94 AddIffs [inverse_iff];
    85 
    95 
    86 goalw Relation.thy [inverse_def] "!!a b r. (a,b):r ==> (b,a): r^-1";
    96 goalw thy [inverse_def] "!!a b r. (a,b):r ==> (b,a): r^-1";
    87 by (Simp_tac 1);
    97 by (Simp_tac 1);
    88 qed "inverseI";
    98 qed "inverseI";
    89 
    99 
    90 goalw Relation.thy [inverse_def] "!!a b r. (a,b) : r^-1 ==> (b,a) : r";
   100 goalw thy [inverse_def] "!!a b r. (a,b) : r^-1 ==> (b,a) : r";
    91 by (Blast_tac 1);
   101 by (Blast_tac 1);
    92 qed "inverseD";
   102 qed "inverseD";
    93 
   103 
    94 (*More general than inverseD, as it "splits" the member of the relation*)
   104 (*More general than inverseD, as it "splits" the member of the relation*)
    95 qed_goalw "inverseE" Relation.thy [inverse_def]
   105 qed_goalw "inverseE" thy [inverse_def]
    96     "[| yx : r^-1;  \
   106     "[| yx : r^-1;  \
    97 \       !!x y. [| yx=(y,x);  (x,y):r |] ==> P \
   107 \       !!x y. [| yx=(y,x);  (x,y):r |] ==> P \
    98 \    |] ==> P"
   108 \    |] ==> P"
    99  (fn [major,minor]=>
   109  (fn [major,minor]=>
   100   [ (rtac (major RS CollectE) 1),
   110   [ (rtac (major RS CollectE) 1),
   101     (REPEAT (eresolve_tac [splitE, bexE,exE, conjE, minor] 1)),
   111     (REPEAT (eresolve_tac [splitE, bexE,exE, conjE, minor] 1)),
   102     (assume_tac 1) ]);
   112     (assume_tac 1) ]);
   103 
   113 
   104 AddSEs [inverseE];
   114 AddSEs [inverseE];
   105 
   115 
   106 goalw Relation.thy [inverse_def] "(r^-1)^-1 = r";
   116 goalw thy [inverse_def] "(r^-1)^-1 = r";
   107 by (Blast_tac 1);
   117 by (Blast_tac 1);
   108 qed "inverse_inverse";
   118 qed "inverse_inverse";
   109 Addsimps [inverse_inverse];
   119 Addsimps [inverse_inverse];
   110 
   120 
   111 goal Relation.thy "(r O s)^-1 = s^-1 O r^-1";
   121 goal thy "(r O s)^-1 = s^-1 O r^-1";
   112 by (Blast_tac 1);
   122 by (Blast_tac 1);
   113 qed "inverse_comp";
   123 qed "inverse_comp";
   114 
   124 
   115 goal Relation.thy "id^-1 = id";
   125 goal thy "id^-1 = id";
   116 by (Blast_tac 1);
   126 by (Blast_tac 1);
   117 qed "inverse_id";
   127 qed "inverse_id";
   118 Addsimps [inverse_id];
   128 Addsimps [inverse_id];
   119 
   129 
   120 (** Domain **)
   130 (** Domain **)
   121 
   131 
   122 qed_goalw "Domain_iff" Relation.thy [Domain_def]
   132 qed_goalw "Domain_iff" thy [Domain_def]
   123     "a: Domain(r) = (EX y. (a,y): r)"
   133     "a: Domain(r) = (EX y. (a,y): r)"
   124  (fn _=> [ (Blast_tac 1) ]);
   134  (fn _=> [ (Blast_tac 1) ]);
   125 
   135 
   126 qed_goal "DomainI" Relation.thy "!!a b r. (a,b): r ==> a: Domain(r)"
   136 qed_goal "DomainI" thy "!!a b r. (a,b): r ==> a: Domain(r)"
   127  (fn _ => [ (etac (exI RS (Domain_iff RS iffD2)) 1) ]);
   137  (fn _ => [ (etac (exI RS (Domain_iff RS iffD2)) 1) ]);
   128 
   138 
   129 qed_goal "DomainE" Relation.thy
   139 qed_goal "DomainE" thy
   130     "[| a : Domain(r);  !!y. (a,y): r ==> P |] ==> P"
   140     "[| a : Domain(r);  !!y. (a,y): r ==> P |] ==> P"
   131  (fn prems=>
   141  (fn prems=>
   132   [ (rtac (Domain_iff RS iffD1 RS exE) 1),
   142   [ (rtac (Domain_iff RS iffD1 RS exE) 1),
   133     (REPEAT (ares_tac prems 1)) ]);
   143     (REPEAT (ares_tac prems 1)) ]);
   134 
   144 
   140 qed "Domain_id";
   150 qed "Domain_id";
   141 Addsimps [Domain_id];
   151 Addsimps [Domain_id];
   142 
   152 
   143 (** Range **)
   153 (** Range **)
   144 
   154 
   145 qed_goalw "RangeI" Relation.thy [Range_def] "!!a b r.(a,b): r ==> b : Range(r)"
   155 qed_goalw "RangeI" thy [Range_def] "!!a b r.(a,b): r ==> b : Range(r)"
   146  (fn _ => [ (etac (inverseI RS DomainI) 1) ]);
   156  (fn _ => [ (etac (inverseI RS DomainI) 1) ]);
   147 
   157 
   148 qed_goalw "RangeE" Relation.thy [Range_def]
   158 qed_goalw "RangeE" thy [Range_def]
   149     "[| b : Range(r);  !!x. (x,b): r ==> P |] ==> P"
   159     "[| b : Range(r);  !!x. (x,b): r ==> P |] ==> P"
   150  (fn major::prems=>
   160  (fn major::prems=>
   151   [ (rtac (major RS DomainE) 1),
   161   [ (rtac (major RS DomainE) 1),
   152     (resolve_tac prems 1),
   162     (resolve_tac prems 1),
   153     (etac inverseD 1) ]);
   163     (etac inverseD 1) ]);
   160 qed "Range_id";
   170 qed "Range_id";
   161 Addsimps [Range_id];
   171 Addsimps [Range_id];
   162 
   172 
   163 (*** Image of a set under a relation ***)
   173 (*** Image of a set under a relation ***)
   164 
   174 
   165 qed_goalw "Image_iff" Relation.thy [Image_def]
   175 qed_goalw "Image_iff" thy [Image_def]
   166     "b : r^^A = (? x:A. (x,b):r)"
   176     "b : r^^A = (? x:A. (x,b):r)"
   167  (fn _ => [ Blast_tac 1 ]);
   177  (fn _ => [ Blast_tac 1 ]);
   168 
   178 
   169 qed_goal "Image_singleton_iff" Relation.thy
   179 qed_goalw "Image_singleton" thy [Image_def]
       
   180     "r^^{a} = {b. (a,b):r}"
       
   181  (fn _ => [ Blast_tac 1 ]);
       
   182 
       
   183 qed_goal "Image_singleton_iff" thy
   170     "(b : r^^{a}) = ((a,b):r)"
   184     "(b : r^^{a}) = ((a,b):r)"
   171  (fn _ => [ rtac (Image_iff RS trans) 1,
   185  (fn _ => [ rtac (Image_iff RS trans) 1,
   172             Blast_tac 1 ]);
   186             Blast_tac 1 ]);
   173 
   187 
   174 qed_goalw "ImageI" Relation.thy [Image_def]
   188 AddIffs [Image_singleton_iff];
       
   189 
       
   190 qed_goalw "ImageI" thy [Image_def]
   175     "!!a b r. [| (a,b): r;  a:A |] ==> b : r^^A"
   191     "!!a b r. [| (a,b): r;  a:A |] ==> b : r^^A"
   176  (fn _ => [ (Blast_tac 1)]);
   192  (fn _ => [ (Blast_tac 1)]);
   177 
   193 
   178 qed_goalw "ImageE" Relation.thy [Image_def]
   194 qed_goalw "ImageE" thy [Image_def]
   179     "[| b: r^^A;  !!x.[| (x,b): r;  x:A |] ==> P |] ==> P"
   195     "[| b: r^^A;  !!x.[| (x,b): r;  x:A |] ==> P |] ==> P"
   180  (fn major::prems=>
   196  (fn major::prems=>
   181   [ (rtac (major RS CollectE) 1),
   197   [ (rtac (major RS CollectE) 1),
   182     (Clarify_tac 1),
   198     (Clarify_tac 1),
   183     (rtac (hd prems) 1),
   199     (rtac (hd prems) 1),
   185 
   201 
   186 AddIs  [ImageI];
   202 AddIs  [ImageI];
   187 AddSEs [ImageE];
   203 AddSEs [ImageE];
   188 
   204 
   189 
   205 
   190 qed_goal "Image_empty" Relation.thy
   206 qed_goal "Image_empty" thy
   191     "R^^{} = {}"
   207     "R^^{} = {}"
   192  (fn _ => [ Blast_tac 1 ]);
   208  (fn _ => [ Blast_tac 1 ]);
   193 
   209 
   194 Addsimps [Image_empty];
   210 Addsimps [Image_empty];
   195 
   211 
   197 by (Blast_tac 1);
   213 by (Blast_tac 1);
   198 qed "Image_id";
   214 qed "Image_id";
   199 
   215 
   200 Addsimps [Image_id];
   216 Addsimps [Image_id];
   201 
   217 
   202 qed_goal "Image_Int_subset" Relation.thy
   218 qed_goal "Image_Int_subset" thy
   203     "R ^^ (A Int B) <= R ^^ A Int R ^^ B"
   219     "R ^^ (A Int B) <= R ^^ A Int R ^^ B"
   204  (fn _ => [ Blast_tac 1 ]);
   220  (fn _ => [ Blast_tac 1 ]);
   205 
   221 
   206 qed_goal "Image_Un" Relation.thy
   222 qed_goal "Image_Un" thy
   207     "R ^^ (A Un B) = R ^^ A Un R ^^ B"
   223     "R ^^ (A Un B) = R ^^ A Un R ^^ B"
   208  (fn _ => [ Blast_tac 1 ]);
   224  (fn _ => [ Blast_tac 1 ]);
   209 
   225 
   210 
   226 
   211 qed_goal "Image_subset" Relation.thy
   227 qed_goal "Image_subset" thy
   212     "!!A B r. r <= A Times B ==> r^^C <= B"
   228     "!!A B r. r <= A Times B ==> r^^C <= B"
   213  (fn _ =>
   229  (fn _ =>
   214   [ (rtac subsetI 1),
   230   [ (rtac subsetI 1),
   215     (REPEAT (eresolve_tac [asm_rl, ImageE, subsetD RS SigmaD2] 1)) ]);
   231     (REPEAT (eresolve_tac [asm_rl, ImageE, subsetD RS SigmaD2] 1)) ]);
   216 
   232 
   217 goal Relation.thy "R O id = R";
   233 goal thy "f-``(r^-1 ^^ {x}) = (UN y: r^-1 ^^ {x}. f-``{y})";
   218 by (Fast_tac 1);
   234 by (Blast_tac 1);
   219 qed "R_O_id";
   235 qed "vimage_inverse_Image";
   220 
       
   221 goal Relation.thy "id O R = R";
       
   222 by (Fast_tac 1);
       
   223 qed "id_O_R";
       
   224 
       
   225 Addsimps [R_O_id,id_O_R];