doc-src/TutorialI/Ifexpr/Ifexpr.thy
changeset 12327 5a4d78204492
parent 11456 7eb63f63e6c6
child 15243 ba52fdc2c4e8
equal deleted inserted replaced
12326:b4e706774e96 12327:5a4d78204492
   160 text{*\noindent
   160 text{*\noindent
   161 Now we prove @{term"normal(norm b)"}. Of course, this requires a lemma about
   161 Now we prove @{term"normal(norm b)"}. Of course, this requires a lemma about
   162 normality of @{term"normif"}:
   162 normality of @{term"normif"}:
   163 *}
   163 *}
   164 
   164 
   165 lemma[simp]: "\<forall>t e. normal(normif b t e) = (normal t \<and> normal e)";
   165 lemma [simp]: "\<forall>t e. normal(normif b t e) = (normal t \<and> normal e)";
   166 (*<*)
   166 (*<*)
   167 apply(induct_tac b);
   167 apply(induct_tac b);
   168 by(auto);
   168 by(auto);
   169 
   169 
   170 theorem "normal(norm b)";
   170 theorem "normal(norm b)";