src/HOL/ex/Unification.thy
changeset 61343 5b5656a63bd6
parent 58889 5b7a9633cfa8
child 61933 cf58b5b794b2
equal deleted inserted replaced
61342:b98cd131e2b5 61343:5b5656a63bd6
     2     Author:     Martin Coen, Cambridge University Computer Laboratory
     2     Author:     Martin Coen, Cambridge University Computer Laboratory
     3     Author:     Konrad Slind, TUM & Cambridge University Computer Laboratory
     3     Author:     Konrad Slind, TUM & Cambridge University Computer Laboratory
     4     Author:     Alexander Krauss, TUM
     4     Author:     Alexander Krauss, TUM
     5 *)
     5 *)
     6 
     6 
     7 section {* Substitution and Unification *}
     7 section \<open>Substitution and Unification\<close>
     8 
     8 
     9 theory Unification
     9 theory Unification
    10 imports Main
    10 imports Main
    11 begin
    11 begin
    12 
    12 
    13 text {* 
    13 text \<open>
    14   Implements Manna \& Waldinger's formalization, with Paulson's
    14   Implements Manna \& Waldinger's formalization, with Paulson's
    15   simplifications, and some new simplifications by Slind and Krauss.
    15   simplifications, and some new simplifications by Slind and Krauss.
    16 
    16 
    17   Z Manna \& R Waldinger, Deductive Synthesis of the Unification
    17   Z Manna \& R Waldinger, Deductive Synthesis of the Unification
    18   Algorithm.  SCP 1 (1981), 5-48
    18   Algorithm.  SCP 1 (1981), 5-48
    23   K Slind, Reasoning about Terminating Functional Programs,
    23   K Slind, Reasoning about Terminating Functional Programs,
    24   Ph.D. thesis, TUM, 1999, Sect. 5.8
    24   Ph.D. thesis, TUM, 1999, Sect. 5.8
    25 
    25 
    26   A Krauss, Partial and Nested Recursive Function Definitions in
    26   A Krauss, Partial and Nested Recursive Function Definitions in
    27   Higher-Order Logic, JAR 44(4):303-336, 2010. Sect. 6.3
    27   Higher-Order Logic, JAR 44(4):303-336, 2010. Sect. 6.3
    28 *}
    28 \<close>
    29 
    29 
    30 
    30 
    31 subsection {* Terms *}
    31 subsection \<open>Terms\<close>
    32 
    32 
    33 text {* Binary trees with leaves that are constants or variables. *}
    33 text \<open>Binary trees with leaves that are constants or variables.\<close>
    34 
    34 
    35 datatype 'a trm = 
    35 datatype 'a trm = 
    36   Var 'a 
    36   Var 'a 
    37   | Const 'a
    37   | Const 'a
    38   | Comb "'a trm" "'a trm" (infix "\<cdot>" 60)
    38   | Comb "'a trm" "'a trm" (infix "\<cdot>" 60)
    58 
    58 
    59 lemma occs_vars_subset: "M \<prec> N \<Longrightarrow> vars_of M \<subseteq> vars_of N"
    59 lemma occs_vars_subset: "M \<prec> N \<Longrightarrow> vars_of M \<subseteq> vars_of N"
    60   by (induct N) auto
    60   by (induct N) auto
    61 
    61 
    62 
    62 
    63 subsection {* Substitutions *}
    63 subsection \<open>Substitutions\<close>
    64 
    64 
    65 type_synonym 'a subst = "('a \<times> 'a trm) list"
    65 type_synonym 'a subst = "('a \<times> 'a trm) list"
    66 
    66 
    67 fun assoc :: "'a \<Rightarrow> 'b \<Rightarrow> ('a \<times> 'b) list \<Rightarrow> 'b"
    67 fun assoc :: "'a \<Rightarrow> 'b \<Rightarrow> ('a \<times> 'b) list \<Rightarrow> 'b"
    68 where
    68 where
   141 
   141 
   142 lemma var_same[simp]: "[(v, t)] \<doteq> [] \<longleftrightarrow> t = Var v"
   142 lemma var_same[simp]: "[(v, t)] \<doteq> [] \<longleftrightarrow> t = Var v"
   143 by (metis assoc.simps(2) subst.simps(1) subst_eq_def var_self)
   143 by (metis assoc.simps(2) subst.simps(1) subst_eq_def var_self)
   144 
   144 
   145 
   145 
   146 subsection {* Unifiers and Most General Unifiers *}
   146 subsection \<open>Unifiers and Most General Unifiers\<close>
   147 
   147 
   148 definition Unifier :: "'a subst \<Rightarrow> 'a trm \<Rightarrow> 'a trm \<Rightarrow> bool"
   148 definition Unifier :: "'a subst \<Rightarrow> 'a trm \<Rightarrow> 'a trm \<Rightarrow> bool"
   149 where "Unifier \<sigma> t u \<longleftrightarrow> (t \<lhd> \<sigma> = u \<lhd> \<sigma>)"
   149 where "Unifier \<sigma> t u \<longleftrightarrow> (t \<lhd> \<sigma> = u \<lhd> \<sigma>)"
   150 
   150 
   151 definition MGU :: "'a subst \<Rightarrow> 'a trm \<Rightarrow> 'a trm \<Rightarrow> bool" where
   151 definition MGU :: "'a subst \<Rightarrow> 'a trm \<Rightarrow> 'a trm \<Rightarrow> bool" where
   181 
   181 
   182 lemma MGU_Const: "MGU [] (Const c) (Const d) \<longleftrightarrow> c = d"
   182 lemma MGU_Const: "MGU [] (Const c) (Const d) \<longleftrightarrow> c = d"
   183   by (auto simp: MGU_def Unifier_def)
   183   by (auto simp: MGU_def Unifier_def)
   184   
   184   
   185 
   185 
   186 subsection {* The unification algorithm *}
   186 subsection \<open>The unification algorithm\<close>
   187 
   187 
   188 function unify :: "'a trm \<Rightarrow> 'a trm \<Rightarrow> 'a subst option"
   188 function unify :: "'a trm \<Rightarrow> 'a trm \<Rightarrow> 'a subst option"
   189 where
   189 where
   190   "unify (Const c) (M \<cdot> N)   = None"
   190   "unify (Const c) (M \<cdot> N)   = None"
   191 | "unify (M \<cdot> N)   (Const c) = None"
   191 | "unify (M \<cdot> N)   (Const c) = None"
   202                                     Some \<theta> \<Rightarrow> (case unify (N \<lhd> \<theta>) (N' \<lhd> \<theta>)
   202                                     Some \<theta> \<Rightarrow> (case unify (N \<lhd> \<theta>) (N' \<lhd> \<theta>)
   203                                       of None \<Rightarrow> None |
   203                                       of None \<Rightarrow> None |
   204                                          Some \<sigma> \<Rightarrow> Some (\<theta> \<lozenge> \<sigma>)))"
   204                                          Some \<sigma> \<Rightarrow> Some (\<theta> \<lozenge> \<sigma>)))"
   205   by pat_completeness auto
   205   by pat_completeness auto
   206 
   206 
   207 subsection {* Properties used in termination proof *}
   207 subsection \<open>Properties used in termination proof\<close>
   208 
   208 
   209 text {* Elimination of variables by a substitution: *}
   209 text \<open>Elimination of variables by a substitution:\<close>
   210 
   210 
   211 definition
   211 definition
   212   "elim \<sigma> v \<equiv> \<forall>t. v \<notin> vars_of (t \<lhd> \<sigma>)"
   212   "elim \<sigma> v \<equiv> \<forall>t. v \<notin> vars_of (t \<lhd> \<sigma>)"
   213 
   213 
   214 lemma elim_intro[intro]: "(\<And>t. v \<notin> vars_of (t \<lhd> \<sigma>)) \<Longrightarrow> elim \<sigma> v"
   214 lemma elim_intro[intro]: "(\<And>t. v \<notin> vars_of (t \<lhd> \<sigma>)) \<Longrightarrow> elim \<sigma> v"
   222 
   222 
   223 lemma occs_elim: "\<not> Var v \<prec> t 
   223 lemma occs_elim: "\<not> Var v \<prec> t 
   224   \<Longrightarrow> elim [(v,t)] v \<or> [(v,t)] \<doteq> []"
   224   \<Longrightarrow> elim [(v,t)] v \<or> [(v,t)] \<doteq> []"
   225 by (metis elim_intro remove_var var_same vars_iff_occseq)
   225 by (metis elim_intro remove_var var_same vars_iff_occseq)
   226 
   226 
   227 text {* The result of a unification never introduces new variables: *}
   227 text \<open>The result of a unification never introduces new variables:\<close>
   228 
   228 
   229 declare unify.psimps[simp]
   229 declare unify.psimps[simp]
   230 
   230 
   231 lemma unify_vars: 
   231 lemma unify_vars: 
   232   assumes "unify_dom (M, N)"
   232   assumes "unify_dom (M, N)"
   286     qed auto
   286     qed auto
   287   qed
   287   qed
   288 qed (auto split: split_if_asm)
   288 qed (auto split: split_if_asm)
   289 
   289 
   290 
   290 
   291 text {* The result of a unification is either the identity
   291 text \<open>The result of a unification is either the identity
   292 substitution or it eliminates a variable from one of the terms: *}
   292 substitution or it eliminates a variable from one of the terms:\<close>
   293 
   293 
   294 lemma unify_eliminates: 
   294 lemma unify_eliminates: 
   295   assumes "unify_dom (M, N)"
   295   assumes "unify_dom (M, N)"
   296   assumes "unify M N = Some \<sigma>"
   296   assumes "unify M N = Some \<sigma>"
   297   shows "(\<exists>v\<in>vars_of M \<union> vars_of N. elim \<sigma> v) \<or> \<sigma> \<doteq> []"
   297   shows "(\<exists>v\<in>vars_of M \<union> vars_of N. elim \<sigma> v) \<or> \<sigma> \<doteq> []"
   330     and \<sigma>: "\<sigma> = \<theta>1 \<lozenge> \<theta>2"
   330     and \<sigma>: "\<sigma> = \<theta>1 \<lozenge> \<theta>2"
   331     and ih1: "?P M M' \<theta>1"
   331     and ih1: "?P M M' \<theta>1"
   332     and ih2: "?P (N\<lhd>\<theta>1) (N'\<lhd>\<theta>1) \<theta>2"
   332     and ih2: "?P (N\<lhd>\<theta>1) (N'\<lhd>\<theta>1) \<theta>2"
   333     by (auto split:option.split_asm)
   333     by (auto split:option.split_asm)
   334 
   334 
   335   from `unify_dom (M \<cdot> N, M' \<cdot> N')`
   335   from \<open>unify_dom (M \<cdot> N, M' \<cdot> N')\<close>
   336   have "unify_dom (M, M')"
   336   have "unify_dom (M, M')"
   337     by (rule accp_downward) (rule unify_rel.intros)
   337     by (rule accp_downward) (rule unify_rel.intros)
   338   hence no_new_vars: 
   338   hence no_new_vars: 
   339     "\<And>t. vars_of (t \<lhd> \<theta>1) \<subseteq> vars_of M \<union> vars_of M' \<union> vars_of t"
   339     "\<And>t. vars_of (t \<lhd> \<theta>1) \<subseteq> vars_of M \<union> vars_of M' \<union> vars_of t"
   340     by (rule unify_vars) (rule `unify M M' = Some \<theta>1`)
   340     by (rule unify_vars) (rule \<open>unify M M' = Some \<theta>1\<close>)
   341 
   341 
   342   from ih2 show ?case 
   342   from ih2 show ?case 
   343   proof 
   343   proof 
   344     assume "\<exists>v\<in>vars_of (N \<lhd> \<theta>1) \<union> vars_of (N' \<lhd> \<theta>1). elim \<theta>2 v"
   344     assume "\<exists>v\<in>vars_of (N \<lhd> \<theta>1) \<union> vars_of (N' \<lhd> \<theta>1). elim \<theta>2 v"
   345     then obtain v 
   345     then obtain v 
   356     finally have "\<sigma> \<doteq> \<theta>1" .
   356     finally have "\<sigma> \<doteq> \<theta>1" .
   357 
   357 
   358     from ih1 show ?thesis
   358     from ih1 show ?thesis
   359     proof
   359     proof
   360       assume "\<exists>v\<in>vars_of M \<union> vars_of M'. elim \<theta>1 v"
   360       assume "\<exists>v\<in>vars_of M \<union> vars_of M'. elim \<theta>1 v"
   361       with elim_eq[OF `\<sigma> \<doteq> \<theta>1`]
   361       with elim_eq[OF \<open>\<sigma> \<doteq> \<theta>1\<close>]
   362       show ?thesis by auto
   362       show ?thesis by auto
   363     next
   363     next
   364       note `\<sigma> \<doteq> \<theta>1`
   364       note \<open>\<sigma> \<doteq> \<theta>1\<close>
   365       also assume "\<theta>1 \<doteq> []"
   365       also assume "\<theta>1 \<doteq> []"
   366       finally show ?thesis ..
   366       finally show ?thesis ..
   367     qed
   367     qed
   368   qed
   368   qed
   369 qed
   369 qed
   370 
   370 
   371 declare unify.psimps[simp del]
   371 declare unify.psimps[simp del]
   372 
   372 
   373 subsection {* Termination proof *}
   373 subsection \<open>Termination proof\<close>
   374 
   374 
   375 termination unify
   375 termination unify
   376 proof 
   376 proof 
   377   let ?R = "measures [\<lambda>(M,N). card (vars_of M \<union> vars_of N),
   377   let ?R = "measures [\<lambda>(M,N). card (vars_of M \<union> vars_of N),
   378                            \<lambda>(M, N). size M]"
   378                            \<lambda>(M, N). size M]"
   387     "unify M M' = Some \<theta>"
   387     "unify M M' = Some \<theta>"
   388 
   388 
   389   from unify_eliminates[OF inner]
   389   from unify_eliminates[OF inner]
   390   show "((N \<lhd> \<theta>, N' \<lhd> \<theta>), (M \<cdot> N, M' \<cdot> N')) \<in>?R"
   390   show "((N \<lhd> \<theta>, N' \<lhd> \<theta>), (M \<cdot> N, M' \<cdot> N')) \<in>?R"
   391   proof
   391   proof
   392     -- {* Either a variable is eliminated \ldots *}
   392     -- \<open>Either a variable is eliminated \ldots\<close>
   393     assume "(\<exists>v\<in>vars_of M \<union> vars_of M'. elim \<theta> v)"
   393     assume "(\<exists>v\<in>vars_of M \<union> vars_of M'. elim \<theta> v)"
   394     then obtain v 
   394     then obtain v 
   395       where "elim \<theta> v" 
   395       where "elim \<theta> v" 
   396       and "v\<in>vars_of M \<union> vars_of M'" by auto
   396       and "v\<in>vars_of M \<union> vars_of M'" by auto
   397     with unify_vars[OF inner]
   397     with unify_vars[OF inner]
   400       by auto
   400       by auto
   401     
   401     
   402     thus ?thesis
   402     thus ?thesis
   403       by (auto intro!: measures_less intro: psubset_card_mono)
   403       by (auto intro!: measures_less intro: psubset_card_mono)
   404   next
   404   next
   405     -- {* Or the substitution is empty *}
   405     -- \<open>Or the substitution is empty\<close>
   406     assume "\<theta> \<doteq> []"
   406     assume "\<theta> \<doteq> []"
   407     hence "N \<lhd> \<theta> = N" 
   407     hence "N \<lhd> \<theta> = N" 
   408       and "N' \<lhd> \<theta> = N'" by auto
   408       and "N' \<lhd> \<theta> = N'" by auto
   409     thus ?thesis 
   409     thus ?thesis 
   410        by (auto intro!: measures_less intro: psubset_card_mono)
   410        by (auto intro!: measures_less intro: psubset_card_mono)
   411   qed
   411   qed
   412 qed
   412 qed
   413 
   413 
   414 
   414 
   415 subsection {* Unification returns a Most General Unifier *}
   415 subsection \<open>Unification returns a Most General Unifier\<close>
   416 
   416 
   417 lemma unify_computes_MGU:
   417 lemma unify_computes_MGU:
   418   "unify M N = Some \<sigma> \<Longrightarrow> MGU \<sigma> M N"
   418   "unify M N = Some \<sigma> \<Longrightarrow> MGU \<sigma> M N"
   419 proof (induct M N arbitrary: \<sigma> rule: unify.induct)
   419 proof (induct M N arbitrary: \<sigma> rule: unify.induct)
   420   case (7 M N M' N' \<sigma>) -- "The interesting case"
   420   case (7 M N M' N' \<sigma>) -- "The interesting case"
   459     thus "\<exists>\<gamma>. \<sigma>' \<doteq> \<sigma> \<lozenge> \<gamma>" ..
   459     thus "\<exists>\<gamma>. \<sigma>' \<doteq> \<sigma> \<lozenge> \<gamma>" ..
   460   qed
   460   qed
   461 qed (auto simp: MGU_Const intro: MGU_Var MGU_Var[symmetric] split: split_if_asm)
   461 qed (auto simp: MGU_Const intro: MGU_Var MGU_Var[symmetric] split: split_if_asm)
   462 
   462 
   463 
   463 
   464 subsection {* Unification returns Idempotent Substitution *}
   464 subsection \<open>Unification returns Idempotent Substitution\<close>
   465 
   465 
   466 definition Idem :: "'a subst \<Rightarrow> bool"
   466 definition Idem :: "'a subst \<Rightarrow> bool"
   467 where "Idem s \<longleftrightarrow> (s \<lozenge> s) \<doteq> s"
   467 where "Idem s \<longleftrightarrow> (s \<lozenge> s) \<doteq> s"
   468 
   468 
   469 lemma Idem_Nil [iff]: "Idem []"
   469 lemma Idem_Nil [iff]: "Idem []"
   507     by (auto split: option.split_asm)
   507     by (auto split: option.split_asm)
   508 
   508 
   509   from \<theta>2 have "Unifier \<theta>2 (M' \<lhd> \<theta>1) (N' \<lhd> \<theta>1)"
   509   from \<theta>2 have "Unifier \<theta>2 (M' \<lhd> \<theta>1) (N' \<lhd> \<theta>1)"
   510     by (rule unify_computes_MGU[THEN MGU_is_Unifier])
   510     by (rule unify_computes_MGU[THEN MGU_is_Unifier])
   511 
   511 
   512   with `Idem \<theta>1`
   512   with \<open>Idem \<theta>1\<close>
   513   show "Idem \<sigma>" unfolding \<sigma>
   513   show "Idem \<sigma>" unfolding \<sigma>
   514   proof (rule Idem_comp)
   514   proof (rule Idem_comp)
   515     fix \<sigma> assume "Unifier \<sigma> (M' \<lhd> \<theta>1) (N' \<lhd> \<theta>1)"
   515     fix \<sigma> assume "Unifier \<sigma> (M' \<lhd> \<theta>1) (N' \<lhd> \<theta>1)"
   516     with \<theta>2 obtain \<gamma> where \<sigma>: "\<sigma> \<doteq> \<theta>2 \<lozenge> \<gamma>"
   516     with \<theta>2 obtain \<gamma> where \<sigma>: "\<sigma> \<doteq> \<theta>2 \<lozenge> \<gamma>"
   517       using unify_computes_MGU MGU_def by blast
   517       using unify_computes_MGU MGU_def by blast
   518 
   518 
   519     have "\<theta>2 \<lozenge> \<sigma> \<doteq> \<theta>2 \<lozenge> (\<theta>2 \<lozenge> \<gamma>)" by (rule subst_cong) (auto simp: \<sigma>)
   519     have "\<theta>2 \<lozenge> \<sigma> \<doteq> \<theta>2 \<lozenge> (\<theta>2 \<lozenge> \<gamma>)" by (rule subst_cong) (auto simp: \<sigma>)
   520     also have "... \<doteq> (\<theta>2 \<lozenge> \<theta>2) \<lozenge> \<gamma>" by (rule comp_assoc[symmetric])
   520     also have "... \<doteq> (\<theta>2 \<lozenge> \<theta>2) \<lozenge> \<gamma>" by (rule comp_assoc[symmetric])
   521     also have "... \<doteq> \<theta>2 \<lozenge> \<gamma>" by (rule subst_cong) (auto simp: `Idem \<theta>2`[unfolded Idem_def])
   521     also have "... \<doteq> \<theta>2 \<lozenge> \<gamma>" by (rule subst_cong) (auto simp: \<open>Idem \<theta>2\<close>[unfolded Idem_def])
   522     also have "... \<doteq> \<sigma>" by (rule \<sigma>[symmetric])
   522     also have "... \<doteq> \<sigma>" by (rule \<sigma>[symmetric])
   523     finally show "\<theta>2 \<lozenge> \<sigma> \<doteq> \<sigma>" .
   523     finally show "\<theta>2 \<lozenge> \<sigma> \<doteq> \<sigma>" .
   524   qed
   524   qed
   525 qed (auto intro!: Var_Idem split: option.splits if_splits)
   525 qed (auto intro!: Var_Idem split: option.splits if_splits)
   526 
   526