src/ZF/ex/Primes.thy
changeset 12867 5c900a821a7c
parent 11382 a816fead971a
child 13259 01fa0c8dbc92
equal deleted inserted replaced
12866:c00df7765656 12867:5c900a821a7c
     4     Copyright   1996  University of Cambridge
     4     Copyright   1996  University of Cambridge
     5 
     5 
     6 The "divides" relation, the greatest common divisor and Euclid's algorithm
     6 The "divides" relation, the greatest common divisor and Euclid's algorithm
     7 *)
     7 *)
     8 
     8 
     9 Primes = Main +
     9 theory Primes = Main:
    10 consts
    10 constdefs
    11   dvd     :: [i,i]=>o              (infixl 50) 
    11   divides :: "[i,i]=>o"              (infixl "dvd" 50) 
    12   is_gcd  :: [i,i,i]=>o            (* great common divisor *)
    12     "m dvd n == m \<in> nat & n \<in> nat & (\<exists>k \<in> nat. n = m#*k)"
    13   gcd     :: [i,i]=>i              (* gcd by Euclid's algorithm *)
    13 
    14   
    14   is_gcd  :: "[i,i,i]=>o"            (* great common divisor *)
    15 defs
    15     "is_gcd(p,m,n) == ((p dvd m) & (p dvd n))   &
    16   dvd_def     "m dvd n == m \\<in> nat & n \\<in> nat & (\\<exists>k \\<in> nat. n = m#*k)"
    16                        (\<forall>d\<in>nat. (d dvd m) & (d dvd n) --> d dvd p)"
    17 
    17 
    18   is_gcd_def  "is_gcd(p,m,n) == ((p dvd m) & (p dvd n))   &
    18   gcd     :: "[i,i]=>i"              (* gcd by Euclid's algorithm *)
    19                (\\<forall>d\\<in>nat. (d dvd m) & (d dvd n) --> d dvd p)"
    19     "gcd(m,n) == transrec(natify(n),
    20 
    20 			%n f. \<lambda>m \<in> nat.
    21   gcd_def     "gcd(m,n) ==   
       
    22                transrec(natify(n),
       
    23 			%n f. \\<lambda>m \\<in> nat.
       
    24 			        if n=0 then m else f`(m mod n)`n) ` natify(m)"
    21 			        if n=0 then m else f`(m mod n)`n) ` natify(m)"
    25 
    22 
    26 constdefs
    23   coprime :: "[i,i]=>o"              (* coprime relation *)
    27   coprime :: [i,i]=>o              (* coprime relation *)
       
    28     "coprime(m,n) == gcd(m,n) = 1"
    24     "coprime(m,n) == gcd(m,n) = 1"
    29   
    25   
    30   prime   :: i                     (* set of prime numbers *)
    26   prime   :: i                     (* set of prime numbers *)
    31    "prime == {p \\<in> nat. 1<p & (\\<forall>m \\<in> nat. m dvd p --> m=1 | m=p)}"
    27    "prime == {p \<in> nat. 1<p & (\<forall>m \<in> nat. m dvd p --> m=1 | m=p)}"
       
    28 
       
    29 (************************************************)
       
    30 (** Divides Relation                           **)
       
    31 (************************************************)
       
    32 
       
    33 lemma dvdD: "m dvd n ==> m \<in> nat & n \<in> nat & (\<exists>k \<in> nat. n = m#*k)"
       
    34 apply (unfold divides_def)
       
    35 apply assumption
       
    36 done
       
    37 
       
    38 lemma dvdE:
       
    39      "[|m dvd n;  !!k. [|m \<in> nat; n \<in> nat; k \<in> nat; n = m#*k|] ==> P|] ==> P"
       
    40 by (blast dest!: dvdD)
       
    41 
       
    42 lemmas dvd_imp_nat1 = dvdD [THEN conjunct1, standard]
       
    43 lemmas dvd_imp_nat2 = dvdD [THEN conjunct2, THEN conjunct1, standard]
       
    44 
       
    45 
       
    46 lemma dvd_0_right [simp]: "m \<in> nat ==> m dvd 0"
       
    47 apply (unfold divides_def)
       
    48 apply (fast intro: nat_0I mult_0_right [symmetric])
       
    49 done
       
    50 
       
    51 lemma dvd_0_left: "0 dvd m ==> m = 0"
       
    52 by (unfold divides_def, force)
       
    53 
       
    54 lemma dvd_refl [simp]: "m \<in> nat ==> m dvd m"
       
    55 apply (unfold divides_def)
       
    56 apply (fast intro: nat_1I mult_1_right [symmetric])
       
    57 done
       
    58 
       
    59 lemma dvd_trans: "[| m dvd n; n dvd p |] ==> m dvd p"
       
    60 apply (unfold divides_def)
       
    61 apply (fast intro: mult_assoc mult_type)
       
    62 done
       
    63 
       
    64 lemma dvd_anti_sym: "[| m dvd n; n dvd m |] ==> m=n"
       
    65 apply (unfold divides_def)
       
    66 apply (force dest: mult_eq_self_implies_10
       
    67              simp add: mult_assoc mult_eq_1_iff)
       
    68 done
       
    69 
       
    70 lemma dvd_mult_left: "[|(i#*j) dvd k; i \<in> nat|] ==> i dvd k"
       
    71 apply (unfold divides_def)
       
    72 apply (simp add: mult_assoc)
       
    73 apply blast
       
    74 done
       
    75 
       
    76 lemma dvd_mult_right: "[|(i#*j) dvd k; j \<in> nat|] ==> j dvd k"
       
    77 apply (unfold divides_def)
       
    78 apply clarify
       
    79 apply (rule_tac x = "i#*k" in bexI)
       
    80 apply (simp add: mult_ac)
       
    81 apply (rule mult_type)
       
    82 done
       
    83 
       
    84 
       
    85 (************************************************)
       
    86 (** Greatest Common Divisor                    **)
       
    87 (************************************************)
       
    88 
       
    89 (* GCD by Euclid's Algorithm *)
       
    90 
       
    91 lemma gcd_0 [simp]: "gcd(m,0) = natify(m)"
       
    92 apply (unfold gcd_def)
       
    93 apply (subst transrec)
       
    94 apply simp
       
    95 done
       
    96 
       
    97 lemma gcd_natify1 [simp]: "gcd(natify(m),n) = gcd(m,n)"
       
    98 by (simp add: gcd_def)
       
    99 
       
   100 lemma gcd_natify2 [simp]: "gcd(m, natify(n)) = gcd(m,n)"
       
   101 by (simp add: gcd_def)
       
   102 
       
   103 lemma gcd_non_0_raw: 
       
   104     "[| 0<n;  n \<in> nat |] ==> gcd(m,n) = gcd(n, m mod n)"
       
   105 apply (unfold gcd_def)
       
   106 apply (rule_tac P = "%z. ?left (z) = ?right" in transrec [THEN ssubst])
       
   107 apply (simp add: ltD [THEN mem_imp_not_eq, THEN not_sym] 
       
   108                  mod_less_divisor [THEN ltD])
       
   109 done
       
   110 
       
   111 lemma gcd_non_0: "0 < natify(n) ==> gcd(m,n) = gcd(n, m mod n)"
       
   112 apply (cut_tac m = "m" and n = "natify (n) " in gcd_non_0_raw)
       
   113 apply auto
       
   114 done
       
   115 
       
   116 lemma gcd_1 [simp]: "gcd(m,1) = 1"
       
   117 by (simp (no_asm_simp) add: gcd_non_0)
       
   118 
       
   119 lemma dvd_add: "[| k dvd a; k dvd b |] ==> k dvd (a #+ b)"
       
   120 apply (unfold divides_def)
       
   121 apply (fast intro: add_mult_distrib_left [symmetric] add_type)
       
   122 done
       
   123 
       
   124 lemma dvd_mult: "k dvd n ==> k dvd (m #* n)"
       
   125 apply (unfold divides_def)
       
   126 apply (fast intro: mult_left_commute mult_type)
       
   127 done
       
   128 
       
   129 lemma dvd_mult2: "k dvd m ==> k dvd (m #* n)"
       
   130 apply (subst mult_commute)
       
   131 apply (blast intro: dvd_mult)
       
   132 done
       
   133 
       
   134 (* k dvd (m*k) *)
       
   135 lemmas dvdI1 [simp] = dvd_refl [THEN dvd_mult, standard]
       
   136 lemmas dvdI2 [simp] = dvd_refl [THEN dvd_mult2, standard]
       
   137 
       
   138 lemma dvd_mod_imp_dvd_raw:
       
   139      "[| a \<in> nat; b \<in> nat; k dvd b; k dvd (a mod b) |] ==> k dvd a"
       
   140 apply (tactic "div_undefined_case_tac \"b=0\" 1")
       
   141 apply (blast intro: mod_div_equality [THEN subst]
       
   142              elim: dvdE 
       
   143              intro!: dvd_add dvd_mult mult_type mod_type div_type)
       
   144 done
       
   145 
       
   146 lemma dvd_mod_imp_dvd: "[| k dvd (a mod b); k dvd b; a \<in> nat |] ==> k dvd a"
       
   147 apply (cut_tac b = "natify (b) " in dvd_mod_imp_dvd_raw)
       
   148 apply auto
       
   149 apply (simp add: divides_def)
       
   150 done
       
   151 
       
   152 (*Imitating TFL*)
       
   153 lemma gcd_induct_lemma [rule_format (no_asm)]: "[| n \<in> nat;  
       
   154          \<forall>m \<in> nat. P(m,0);  
       
   155          \<forall>m \<in> nat. \<forall>n \<in> nat. 0<n --> P(n, m mod n) --> P(m,n) |]  
       
   156       ==> \<forall>m \<in> nat. P (m,n)"
       
   157 apply (erule_tac i = "n" in complete_induct)
       
   158 apply (case_tac "x=0")
       
   159 apply (simp (no_asm_simp))
       
   160 apply clarify
       
   161 apply (drule_tac x1 = "m" and x = "x" in bspec [THEN bspec])
       
   162 apply (simp_all add: Ord_0_lt_iff)
       
   163 apply (blast intro: mod_less_divisor [THEN ltD])
       
   164 done
       
   165 
       
   166 lemma gcd_induct: "!!P. [| m \<in> nat; n \<in> nat;  
       
   167          !!m. m \<in> nat ==> P(m,0);  
       
   168          !!m n. [|m \<in> nat; n \<in> nat; 0<n; P(n, m mod n)|] ==> P(m,n) |]  
       
   169       ==> P (m,n)"
       
   170 by (blast intro: gcd_induct_lemma)
       
   171 
       
   172 
       
   173 
       
   174 (* gcd type *)
       
   175 
       
   176 lemma gcd_type [simp,TC]: "gcd(m, n) \<in> nat"
       
   177 apply (subgoal_tac "gcd (natify (m) , natify (n)) \<in> nat")
       
   178 apply simp
       
   179 apply (rule_tac m = "natify (m) " and n = "natify (n) " in gcd_induct)
       
   180 apply auto
       
   181 apply (simp add: gcd_non_0)
       
   182 done
       
   183 
       
   184 
       
   185 (* Property 1: gcd(a,b) divides a and b *)
       
   186 
       
   187 lemma gcd_dvd_both:
       
   188      "[| m \<in> nat; n \<in> nat |] ==> gcd (m, n) dvd m & gcd (m, n) dvd n"
       
   189 apply (rule_tac m = "m" and n = "n" in gcd_induct)
       
   190 apply (simp_all add: gcd_non_0)
       
   191 apply (blast intro: dvd_mod_imp_dvd_raw nat_into_Ord [THEN Ord_0_lt])
       
   192 done
       
   193 
       
   194 lemma gcd_dvd1 [simp]: "m \<in> nat ==> gcd(m,n) dvd m"
       
   195 apply (cut_tac m = "natify (m) " and n = "natify (n) " in gcd_dvd_both)
       
   196 apply auto
       
   197 done
       
   198 
       
   199 lemma gcd_dvd2 [simp]: "n \<in> nat ==> gcd(m,n) dvd n"
       
   200 apply (cut_tac m = "natify (m) " and n = "natify (n) " in gcd_dvd_both)
       
   201 apply auto
       
   202 done
       
   203 
       
   204 (* if f divides a and b then f divides gcd(a,b) *)
       
   205 
       
   206 lemma dvd_mod: "[| f dvd a; f dvd b |] ==> f dvd (a mod b)"
       
   207 apply (unfold divides_def)
       
   208 apply (tactic "div_undefined_case_tac \"b=0\" 1")
       
   209 apply auto
       
   210 apply (blast intro: mod_mult_distrib2 [symmetric])
       
   211 done
       
   212 
       
   213 (* Property 2: for all a,b,f naturals, 
       
   214                if f divides a and f divides b then f divides gcd(a,b)*)
       
   215 
       
   216 lemma gcd_greatest_raw [rule_format]:
       
   217      "[| m \<in> nat; n \<in> nat; f \<in> nat |]    
       
   218       ==> (f dvd m) --> (f dvd n) --> f dvd gcd(m,n)"
       
   219 apply (rule_tac m = "m" and n = "n" in gcd_induct)
       
   220 apply (simp_all add: gcd_non_0 dvd_mod)
       
   221 done
       
   222 
       
   223 lemma gcd_greatest: "[| f dvd m;  f dvd n;  f \<in> nat |] ==> f dvd gcd(m,n)"
       
   224 apply (rule gcd_greatest_raw)
       
   225 apply (auto simp add: divides_def)
       
   226 done
       
   227 
       
   228 lemma gcd_greatest_iff [simp]: "[| k \<in> nat; m \<in> nat; n \<in> nat |]  
       
   229       ==> (k dvd gcd (m, n)) <-> (k dvd m & k dvd n)"
       
   230 by (blast intro!: gcd_greatest gcd_dvd1 gcd_dvd2 intro: dvd_trans)
       
   231 
       
   232 
       
   233 (* GCD PROOF: GCD exists and gcd fits the definition *)
       
   234 
       
   235 lemma is_gcd: "[| m \<in> nat; n \<in> nat |] ==> is_gcd(gcd(m,n), m, n)"
       
   236 by (simp add: is_gcd_def)
       
   237 
       
   238 (* GCD is unique *)
       
   239 
       
   240 lemma is_gcd_unique: "[|is_gcd(m,a,b); is_gcd(n,a,b); m\<in>nat; n\<in>nat|] ==> m=n"
       
   241 apply (unfold is_gcd_def)
       
   242 apply (blast intro: dvd_anti_sym)
       
   243 done
       
   244 
       
   245 lemma is_gcd_commute: "is_gcd(k,m,n) <-> is_gcd(k,n,m)"
       
   246 by (unfold is_gcd_def, blast)
       
   247 
       
   248 lemma gcd_commute_raw: "[| m \<in> nat; n \<in> nat |] ==> gcd(m,n) = gcd(n,m)"
       
   249 apply (rule is_gcd_unique)
       
   250 apply (rule is_gcd)
       
   251 apply (rule_tac [3] is_gcd_commute [THEN iffD1])
       
   252 apply (rule_tac [3] is_gcd)
       
   253 apply auto
       
   254 done
       
   255 
       
   256 lemma gcd_commute: "gcd(m,n) = gcd(n,m)"
       
   257 apply (cut_tac m = "natify (m) " and n = "natify (n) " in gcd_commute_raw)
       
   258 apply auto
       
   259 done
       
   260 
       
   261 lemma gcd_assoc_raw: "[| k \<in> nat; m \<in> nat; n \<in> nat |]  
       
   262       ==> gcd (gcd (k, m), n) = gcd (k, gcd (m, n))"
       
   263 apply (rule is_gcd_unique)
       
   264 apply (rule is_gcd)
       
   265 apply (simp_all add: is_gcd_def)
       
   266 apply (blast intro: gcd_dvd1 gcd_dvd2 gcd_type intro: dvd_trans)
       
   267 done
       
   268 
       
   269 lemma gcd_assoc: "gcd (gcd (k, m), n) = gcd (k, gcd (m, n))"
       
   270 apply (cut_tac k = "natify (k) " and m = "natify (m) " and n = "natify (n) " 
       
   271        in gcd_assoc_raw)
       
   272 apply auto
       
   273 done
       
   274 
       
   275 lemma gcd_0_left [simp]: "gcd (0, m) = natify(m)"
       
   276 by (simp add: gcd_commute [of 0])
       
   277 
       
   278 lemma gcd_1_left [simp]: "gcd (1, m) = 1"
       
   279 by (simp add: gcd_commute [of 1])
       
   280 
       
   281 
       
   282 (* Multiplication laws *)
       
   283 
       
   284 lemma gcd_mult_distrib2_raw:
       
   285      "[| k \<in> nat; m \<in> nat; n \<in> nat |]  
       
   286       ==> k #* gcd (m, n) = gcd (k #* m, k #* n)"
       
   287 apply (erule_tac m = "m" and n = "n" in gcd_induct)
       
   288 apply assumption
       
   289 apply (simp)
       
   290 apply (case_tac "k = 0")
       
   291 apply simp
       
   292 apply (simp add: mod_geq gcd_non_0 mod_mult_distrib2 Ord_0_lt_iff)
       
   293 done
       
   294 
       
   295 lemma gcd_mult_distrib2: "k #* gcd (m, n) = gcd (k #* m, k #* n)"
       
   296 apply (cut_tac k = "natify (k) " and m = "natify (m) " and n = "natify (n) " 
       
   297        in gcd_mult_distrib2_raw)
       
   298 apply auto
       
   299 done
       
   300 
       
   301 lemma gcd_mult [simp]: "gcd (k, k #* n) = natify(k)"
       
   302 apply (cut_tac k = "k" and m = "1" and n = "n" in gcd_mult_distrib2)
       
   303 apply auto
       
   304 done
       
   305 
       
   306 lemma gcd_self [simp]: "gcd (k, k) = natify(k)"
       
   307 apply (cut_tac k = "k" and n = "1" in gcd_mult)
       
   308 apply auto
       
   309 done
       
   310 
       
   311 lemma relprime_dvd_mult:
       
   312      "[| gcd (k,n) = 1;  k dvd (m #* n);  m \<in> nat |] ==> k dvd m"
       
   313 apply (cut_tac k = "m" and m = "k" and n = "n" in gcd_mult_distrib2)
       
   314 apply auto
       
   315 apply (erule_tac b = "m" in ssubst)
       
   316 apply (simp add: dvd_imp_nat1)
       
   317 done
       
   318 
       
   319 lemma relprime_dvd_mult_iff:
       
   320      "[| gcd (k,n) = 1;  m \<in> nat |] ==> k dvd (m #* n) <-> k dvd m"
       
   321 by (blast intro: dvdI2 relprime_dvd_mult dvd_trans)
       
   322 
       
   323 lemma prime_imp_relprime: 
       
   324      "[| p \<in> prime;  ~ (p dvd n);  n \<in> nat |] ==> gcd (p, n) = 1"
       
   325 apply (unfold prime_def)
       
   326 apply clarify
       
   327 apply (drule_tac x = "gcd (p,n) " in bspec)
       
   328 apply auto
       
   329 apply (cut_tac m = "p" and n = "n" in gcd_dvd2)
       
   330 apply auto
       
   331 done
       
   332 
       
   333 lemma prime_into_nat: "p \<in> prime ==> p \<in> nat"
       
   334 by (unfold prime_def, auto)
       
   335 
       
   336 lemma prime_nonzero: "p \<in> prime \<Longrightarrow> p\<noteq>0"
       
   337 by (unfold prime_def, auto)
       
   338 
       
   339 
       
   340 (*This theorem leads immediately to a proof of the uniqueness of
       
   341   factorization.  If p divides a product of primes then it is
       
   342   one of those primes.*)
       
   343 
       
   344 lemma prime_dvd_mult:
       
   345      "[|p dvd m #* n; p \<in> prime; m \<in> nat; n \<in> nat |] ==> p dvd m \<or> p dvd n"
       
   346 by (blast intro: relprime_dvd_mult prime_imp_relprime prime_into_nat)
       
   347 
       
   348 
       
   349 (** Addition laws **)
       
   350 
       
   351 lemma gcd_add1 [simp]: "gcd (m #+ n, n) = gcd (m, n)"
       
   352 apply (subgoal_tac "gcd (m #+ natify (n) , natify (n)) = gcd (m, natify (n))")
       
   353 apply simp
       
   354 apply (case_tac "natify (n) = 0")
       
   355 apply (auto simp add: Ord_0_lt_iff gcd_non_0)
       
   356 done
       
   357 
       
   358 lemma gcd_add2 [simp]: "gcd (m, m #+ n) = gcd (m, n)"
       
   359 apply (rule gcd_commute [THEN trans])
       
   360 apply (subst add_commute)
       
   361 apply simp
       
   362 apply (rule gcd_commute)
       
   363 done
       
   364 
       
   365 lemma gcd_add2' [simp]: "gcd (m, n #+ m) = gcd (m, n)"
       
   366 by (subst add_commute, rule gcd_add2)
       
   367 
       
   368 lemma gcd_add_mult_raw: "k \<in> nat ==> gcd (m, k #* m #+ n) = gcd (m, n)"
       
   369 apply (erule nat_induct)
       
   370 apply (auto simp add: gcd_add2 add_assoc)
       
   371 done
       
   372 
       
   373 lemma gcd_add_mult: "gcd (m, k #* m #+ n) = gcd (m, n)"
       
   374 apply (cut_tac k = "natify (k) " in gcd_add_mult_raw)
       
   375 apply auto
       
   376 done
       
   377 
       
   378 
       
   379 (* More multiplication laws *)
       
   380 
       
   381 lemma gcd_mult_cancel_raw:
       
   382      "[|gcd (k,n) = 1; m \<in> nat; n \<in> nat|] ==> gcd (k #* m, n) = gcd (m, n)"
       
   383 apply (rule dvd_anti_sym)
       
   384  apply (rule gcd_greatest)
       
   385   apply (rule relprime_dvd_mult [of _ k])
       
   386 apply (simp add: gcd_assoc)
       
   387 apply (simp add: gcd_commute)
       
   388 apply (simp_all add: mult_commute)
       
   389 apply (blast intro: dvdI1 gcd_dvd1 dvd_trans)
       
   390 done
       
   391 
       
   392 lemma gcd_mult_cancel: "gcd (k,n) = 1 ==> gcd (k #* m, n) = gcd (m, n)"
       
   393 apply (cut_tac m = "natify (m) " and n = "natify (n) " in gcd_mult_cancel_raw)
       
   394 apply auto
       
   395 done
       
   396 
       
   397 
       
   398 (*** The square root of a prime is irrational: key lemma ***)
       
   399 
       
   400 lemma prime_dvd_other_side:
       
   401      "\<lbrakk>n#*n = p#*(k#*k); p \<in> prime; n \<in> nat\<rbrakk> \<Longrightarrow> p dvd n"
       
   402 apply (subgoal_tac "p dvd n#*n")
       
   403  apply (blast dest: prime_dvd_mult)
       
   404 apply (rule_tac j = "k#*k" in dvd_mult_left)
       
   405  apply (auto simp add: prime_def)
       
   406 done
       
   407 
       
   408 lemma reduction:
       
   409      "\<lbrakk>k#*k = p#*(j#*j); p \<in> prime; 0 < k; j \<in> nat; k \<in> nat\<rbrakk>  
       
   410       \<Longrightarrow> k < p#*j & 0 < j"
       
   411 apply (rule ccontr)
       
   412 apply (simp add: not_lt_iff_le prime_into_nat)
       
   413 apply (erule disjE)
       
   414  apply (frule mult_le_mono, assumption+)
       
   415 apply (simp add: mult_ac)
       
   416 apply (auto dest!: natify_eqE 
       
   417             simp add: not_lt_iff_le prime_into_nat mult_le_cancel_le1)
       
   418 apply (simp add: prime_def)
       
   419 apply (blast dest: lt_trans1)
       
   420 done
       
   421 
       
   422 lemma rearrange: "j #* (p#*j) = k#*k \<Longrightarrow> k#*k = p#*(j#*j)"
       
   423 by (simp add: mult_ac)
       
   424 
       
   425 lemma prime_not_square:
       
   426      "\<lbrakk>m \<in> nat; p \<in> prime\<rbrakk> \<Longrightarrow> \<forall>k \<in> nat. 0<k \<longrightarrow> m#*m \<noteq> p#*(k#*k)"
       
   427 apply (erule complete_induct)
       
   428 apply clarify
       
   429 apply (frule prime_dvd_other_side)
       
   430 apply assumption
       
   431 apply assumption
       
   432 apply (erule dvdE)
       
   433 apply (simp add: mult_assoc mult_cancel1 prime_nonzero prime_into_nat)
       
   434 apply (blast dest: rearrange reduction ltD)
       
   435 done
    32 
   436 
    33 end
   437 end