1545 finally show ?thesis unfolding nn_integral_max_0 . |
1545 finally show ?thesis unfolding nn_integral_max_0 . |
1546 qed |
1546 qed |
1547 |
1547 |
1548 lemma sup_continuous_nn_integral: |
1548 lemma sup_continuous_nn_integral: |
1549 assumes f: "\<And>y. sup_continuous (f y)" |
1549 assumes f: "\<And>y. sup_continuous (f y)" |
1550 assumes [measurable]: "\<And>F x. (\<lambda>y. f y F x) \<in> borel_measurable (M x)" |
1550 assumes [measurable]: "\<And>x. (\<lambda>y. f y x) \<in> borel_measurable M" |
1551 shows "sup_continuous (\<lambda>F x. (\<integral>\<^sup>+y. f y F x \<partial>M x))" |
1551 shows "sup_continuous (\<lambda>x. (\<integral>\<^sup>+y. f y x \<partial>M))" |
1552 unfolding sup_continuous_def |
1552 unfolding sup_continuous_def |
1553 proof safe |
1553 proof safe |
1554 fix C :: "nat \<Rightarrow> 'b \<Rightarrow> ereal" assume C: "incseq C" |
1554 fix C :: "nat \<Rightarrow> 'b" assume C: "incseq C" |
1555 then show "(\<lambda>x. \<integral>\<^sup>+ y. f y (SUPREMUM UNIV C) x \<partial>M x) = (SUP i. (\<lambda>x. \<integral>\<^sup>+ y. f y (C i) x \<partial>M x))" |
1555 with sup_continuous_mono[OF f] show "(\<integral>\<^sup>+ y. f y (SUPREMUM UNIV C) \<partial>M) = (SUP i. \<integral>\<^sup>+ y. f y (C i) \<partial>M)" |
1556 using sup_continuous_mono[OF f] |
1556 unfolding sup_continuousD[OF f C] |
1557 by (simp add: sup_continuousD[OF f C] fun_eq_iff nn_integral_monotone_convergence_SUP mono_def le_fun_def) |
1557 by (subst nn_integral_monotone_convergence_SUP) (auto simp: mono_def le_fun_def) |
1558 qed |
1558 qed |
1559 |
1559 |
1560 lemma inf_continuous_nn_integral: |
1560 lemma inf_continuous_nn_integral: |
1561 assumes f: "\<And>y. inf_continuous (f y)" |
1561 assumes f: "\<And>y. inf_continuous (f y)" |
1562 assumes [measurable]: "\<And>F x. (\<lambda>y. f y F x) \<in> borel_measurable (M x)" |
1562 assumes [measurable]: "\<And>x. (\<lambda>y. f y x) \<in> borel_measurable M" |
1563 assumes bnd: "\<And>x F. (\<integral>\<^sup>+ y. f y F x \<partial>M x) \<noteq> \<infinity>" |
1563 assumes bnd: "\<And>x. (\<integral>\<^sup>+ y. f y x \<partial>M) \<noteq> \<infinity>" |
1564 shows "inf_continuous (\<lambda>F x. (\<integral>\<^sup>+y. f y F x \<partial>M x))" |
1564 shows "inf_continuous (\<lambda>x. (\<integral>\<^sup>+y. f y x \<partial>M))" |
1565 unfolding inf_continuous_def |
1565 unfolding inf_continuous_def |
1566 proof safe |
1566 proof safe |
1567 fix C :: "nat \<Rightarrow> 'b \<Rightarrow> ereal" assume C: "decseq C" |
1567 fix C :: "nat \<Rightarrow> 'b" assume C: "decseq C" |
1568 then show "(\<lambda>x. \<integral>\<^sup>+ y. f y (INFIMUM UNIV C) x \<partial>M x) = (INF i. (\<lambda>x. \<integral>\<^sup>+ y. f y (C i) x \<partial>M x))" |
1568 then show "(\<integral>\<^sup>+ y. f y (INFIMUM UNIV C) \<partial>M) = (INF i. \<integral>\<^sup>+ y. f y (C i) \<partial>M)" |
1569 using inf_continuous_mono[OF f] |
1569 using inf_continuous_mono[OF f] |
1570 by (auto simp add: inf_continuousD[OF f C] fun_eq_iff antimono_def mono_def le_fun_def bnd |
1570 by (auto simp add: inf_continuousD[OF f C] fun_eq_iff antimono_def mono_def le_fun_def bnd |
1571 intro!: nn_integral_monotone_convergence_INF) |
1571 intro!: nn_integral_monotone_convergence_INF) |
1572 qed |
1572 qed |
1573 |
1573 |