src/HOL/Real/RealOrd.thy
changeset 14334 6137d24eef79
parent 14333 14f29eb097a3
child 14335 9c0b5e081037
equal deleted inserted replaced
14333:14f29eb097a3 14334:6137d24eef79
     1 (*  Title:	 Real/RealOrd.thy
       
     2     ID: 	 $Id$
       
     3     Author:      Jacques D. Fleuriot and Lawrence C. Paulson
       
     4     Copyright:   1998  University of Cambridge
       
     5 *)
       
     6 
       
     7 header{*The Reals Form an Ordered Field, etc.*}
       
     8 
       
     9 theory RealOrd = RealDef:
       
    10 
       
    11 defs (overloaded)
       
    12   real_abs_def:  "abs (r::real) == (if 0 \<le> r then r else -r)"
       
    13 
       
    14 
       
    15 
       
    16 subsection{*Properties of Less-Than Or Equals*}
       
    17 
       
    18 lemma real_leI: "~(w < z) ==> z \<le> (w::real)"
       
    19 by (unfold real_le_def, assumption)
       
    20 
       
    21 lemma real_leD: "z\<le>w ==> ~(w<(z::real))"
       
    22 by (unfold real_le_def, assumption)
       
    23 
       
    24 lemma not_real_leE: "~ z \<le> w ==> w<(z::real)"
       
    25 by (unfold real_le_def, blast)
       
    26 
       
    27 lemma real_le_imp_less_or_eq: "!!(x::real). x \<le> y ==> x < y | x = y"
       
    28 apply (unfold real_le_def)
       
    29 apply (cut_tac real_linear)
       
    30 apply (blast elim: real_less_irrefl real_less_asym)
       
    31 done
       
    32 
       
    33 lemma real_less_or_eq_imp_le: "z<w | z=w ==> z \<le>(w::real)"
       
    34 apply (unfold real_le_def)
       
    35 apply (cut_tac real_linear)
       
    36 apply (fast elim: real_less_irrefl real_less_asym)
       
    37 done
       
    38 
       
    39 lemma real_le_less: "(x \<le> (y::real)) = (x < y | x=y)"
       
    40 by (blast intro!: real_less_or_eq_imp_le dest!: real_le_imp_less_or_eq)
       
    41 
       
    42 lemma real_le_refl: "w \<le> (w::real)"
       
    43 by (simp add: real_le_less)
       
    44 
       
    45 lemma real_le_trans: "[| i \<le> j; j \<le> k |] ==> i \<le> (k::real)"
       
    46 apply (drule real_le_imp_less_or_eq) 
       
    47 apply (drule real_le_imp_less_or_eq) 
       
    48 apply (rule real_less_or_eq_imp_le) 
       
    49 apply (blast intro: real_less_trans) 
       
    50 done
       
    51 
       
    52 lemma real_le_anti_sym: "[| z \<le> w; w \<le> z |] ==> z = (w::real)"
       
    53 apply (drule real_le_imp_less_or_eq) 
       
    54 apply (drule real_le_imp_less_or_eq) 
       
    55 apply (fast elim: real_less_irrefl real_less_asym)
       
    56 done
       
    57 
       
    58 (* Axiom 'order_less_le' of class 'order': *)
       
    59 lemma real_less_le: "((w::real) < z) = (w \<le> z & w \<noteq> z)"
       
    60 apply (simp add: real_le_def real_neq_iff)
       
    61 apply (blast elim!: real_less_asym)
       
    62 done
       
    63 
       
    64 instance real :: order
       
    65   by (intro_classes,
       
    66       (assumption | 
       
    67        rule real_le_refl real_le_trans real_le_anti_sym real_less_le)+)
       
    68 
       
    69 (* Axiom 'linorder_linear' of class 'linorder': *)
       
    70 lemma real_le_linear: "(z::real) \<le> w | w \<le> z"
       
    71 apply (simp add: real_le_less)
       
    72 apply (cut_tac real_linear, blast)
       
    73 done
       
    74 
       
    75 instance real :: linorder
       
    76   by (intro_classes, rule real_le_linear)
       
    77 
       
    78 
       
    79 subsection{*Theorems About the Ordering*}
       
    80 
       
    81 lemma real_gt_zero_preal_Ex: "(0 < x) = (\<exists>y. x = real_of_preal y)"
       
    82 apply (auto simp add: real_of_preal_zero_less)
       
    83 apply (cut_tac x = x in real_of_preal_trichotomy)
       
    84 apply (blast elim!: real_less_irrefl real_of_preal_not_minus_gt_zero [THEN notE])
       
    85 done
       
    86 
       
    87 lemma real_gt_preal_preal_Ex:
       
    88      "real_of_preal z < x ==> \<exists>y. x = real_of_preal y"
       
    89 by (blast dest!: real_of_preal_zero_less [THEN real_less_trans]
       
    90              intro: real_gt_zero_preal_Ex [THEN iffD1])
       
    91 
       
    92 lemma real_ge_preal_preal_Ex:
       
    93      "real_of_preal z \<le> x ==> \<exists>y. x = real_of_preal y"
       
    94 by (blast dest: order_le_imp_less_or_eq real_gt_preal_preal_Ex)
       
    95 
       
    96 lemma real_less_all_preal: "y \<le> 0 ==> \<forall>x. y < real_of_preal x"
       
    97 by (auto elim: order_le_imp_less_or_eq [THEN disjE] 
       
    98             intro: real_of_preal_zero_less [THEN [2] real_less_trans] 
       
    99             simp add: real_of_preal_zero_less)
       
   100 
       
   101 lemma real_less_all_real2: "~ 0 < y ==> \<forall>x. y < real_of_preal x"
       
   102 by (blast intro!: real_less_all_preal real_leI)
       
   103 
       
   104 lemma real_of_preal_le_iff:
       
   105      "(real_of_preal m1 \<le> real_of_preal m2) = (m1 \<le> m2)"
       
   106 apply (auto intro!: preal_leI simp add: linorder_not_less [symmetric])
       
   107 done
       
   108 
       
   109 
       
   110 subsection{*Monotonicity of Addition*}
       
   111 
       
   112 lemma real_add_left_cancel: "((x::real) + y = x + z) = (y = z)"
       
   113 apply safe
       
   114 apply (drule_tac f = "%t. (-x) + t" in arg_cong)
       
   115 apply (simp add: real_add_assoc [symmetric])
       
   116 done
       
   117 
       
   118 
       
   119 lemma real_mult_order: "[| 0 < x; 0 < y |] ==> (0::real) < x * y"
       
   120 apply (auto simp add: real_gt_zero_preal_Ex)
       
   121 apply (rule_tac x = "y*ya" in exI)
       
   122 apply (simp (no_asm_use) add: real_of_preal_mult)
       
   123 done
       
   124 
       
   125 lemma real_minus_add_distrib [simp]: "-(x + y) = (-x) + (- y :: real)"
       
   126 apply (rule_tac z = x in eq_Abs_REAL)
       
   127 apply (rule_tac z = y in eq_Abs_REAL)
       
   128 apply (auto simp add: real_minus real_add)
       
   129 done
       
   130 
       
   131 (*Alternative definition for real_less*)
       
   132 lemma real_less_add_positive_left_Ex: "R < S ==> \<exists>T::real. 0 < T & R + T = S"
       
   133 apply (rule_tac x = R in real_of_preal_trichotomyE)
       
   134 apply (rule_tac [!] x = S in real_of_preal_trichotomyE)
       
   135 apply (auto dest!: preal_less_add_left_Ex simp add: real_of_preal_not_minus_gt_all real_of_preal_add real_of_preal_not_less_zero real_less_not_refl real_of_preal_not_minus_gt_zero)
       
   136 apply (rule_tac x = "real_of_preal D" in exI)
       
   137 apply (rule_tac [2] x = "real_of_preal m+real_of_preal ma" in exI)
       
   138 apply (rule_tac [3] x = "real_of_preal D" in exI)
       
   139 apply (auto simp add: real_of_preal_zero_less real_of_preal_sum_zero_less real_add_assoc)
       
   140 apply (simp add: real_add_assoc [symmetric])
       
   141 done
       
   142 
       
   143 lemma real_less_sum_gt_zero: "(W < S) ==> (0 < S + (-W::real))"
       
   144 apply (drule real_less_add_positive_left_Ex)
       
   145 apply (auto simp add: real_add_minus real_add_zero_right real_add_ac)
       
   146 done
       
   147 
       
   148 lemma real_lemma_change_eq_subj: "!!S::real. T = S + W ==> S = T + (-W)"
       
   149 by (simp add: real_add_ac)
       
   150 
       
   151 (* FIXME: long! *)
       
   152 lemma real_sum_gt_zero_less: "(0 < S + (-W::real)) ==> (W < S)"
       
   153 apply (rule ccontr)
       
   154 apply (drule real_leI [THEN real_le_imp_less_or_eq])
       
   155 apply (auto simp add: real_less_not_refl)
       
   156 apply (drule real_less_add_positive_left_Ex, clarify, simp)
       
   157 apply (drule real_lemma_change_eq_subj, auto)
       
   158 apply (drule real_less_sum_gt_zero)
       
   159 apply (auto elim: real_less_asym simp add: real_add_left_commute [of W] real_add_ac)
       
   160 done
       
   161 
       
   162 lemma real_mult_less_mono2: "[| (0::real) < z; x < y |] ==> z * x < z * y"
       
   163 apply (rule real_sum_gt_zero_less)
       
   164 apply (drule real_less_sum_gt_zero [of x y])
       
   165 apply (drule real_mult_order, assumption)
       
   166 apply (simp add: real_add_mult_distrib2)
       
   167 done
       
   168 
       
   169 lemma real_less_sum_gt_0_iff: "(0 < S + (-W::real)) = (W < S)"
       
   170 by (blast intro: real_less_sum_gt_zero real_sum_gt_zero_less)
       
   171 
       
   172 lemma real_less_eq_diff: "(x<y) = (x-y < (0::real))"
       
   173 apply (unfold real_diff_def)
       
   174 apply (subst real_minus_zero_less_iff [symmetric])
       
   175 apply (simp add: real_add_commute real_less_sum_gt_0_iff)
       
   176 done
       
   177 
       
   178 lemma real_less_eqI: "(x::real) - y = x' - y' ==> (x<y) = (x'<y')"
       
   179 apply (subst real_less_eq_diff)
       
   180 apply (rule_tac y1 = y in real_less_eq_diff [THEN ssubst], simp)
       
   181 done
       
   182 
       
   183 lemma real_le_eqI: "(x::real) - y = x' - y' ==> (y\<le>x) = (y'\<le>x')"
       
   184 apply (drule real_less_eqI)
       
   185 apply (simp add: real_le_def)
       
   186 done
       
   187 
       
   188 lemma real_add_left_mono: "x \<le> y ==> z + x \<le> z + (y::real)"
       
   189 apply (rule real_le_eqI [THEN iffD1]) 
       
   190  prefer 2 apply assumption
       
   191 apply (simp add: real_diff_def real_add_ac)
       
   192 done
       
   193 
       
   194 
       
   195 subsection{*The Reals Form an Ordered Field*}
       
   196 
       
   197 instance real :: inverse ..
       
   198 
       
   199 instance real :: ordered_field
       
   200 proof
       
   201   fix x y z :: real
       
   202   show "(x + y) + z = x + (y + z)" by (rule real_add_assoc)
       
   203   show "x + y = y + x" by (rule real_add_commute)
       
   204   show "0 + x = x" by simp
       
   205   show "- x + x = 0" by simp
       
   206   show "x - y = x + (-y)" by (simp add: real_diff_def)
       
   207   show "(x * y) * z = x * (y * z)" by (rule real_mult_assoc)
       
   208   show "x * y = y * x" by (rule real_mult_commute)
       
   209   show "1 * x = x" by simp
       
   210   show "(x + y) * z = x * z + y * z" by (simp add: real_add_mult_distrib)
       
   211   show "0 \<noteq> (1::real)" by (rule real_zero_not_eq_one)
       
   212   show "x \<le> y ==> z + x \<le> z + y" by (rule real_add_left_mono)
       
   213   show "x < y ==> 0 < z ==> z * x < z * y" by (simp add: real_mult_less_mono2)
       
   214   show "\<bar>x\<bar> = (if x < 0 then -x else x)"
       
   215     by (auto dest: order_le_less_trans simp add: real_abs_def linorder_not_le)
       
   216   show "x \<noteq> 0 ==> inverse x * x = 1" by simp
       
   217   show "y \<noteq> 0 ==> x / y = x * inverse y" by (simp add: real_divide_def)
       
   218 qed
       
   219 
       
   220 
       
   221 lemma real_zero_less_one: "0 < (1::real)"
       
   222   by (rule Ring_and_Field.zero_less_one)
       
   223 
       
   224 lemma real_add_less_mono: "[| R1 < S1; R2 < S2 |] ==> R1+R2 < S1+(S2::real)"
       
   225  by (rule Ring_and_Field.add_strict_mono)
       
   226 
       
   227 lemma real_add_le_mono: "[|i\<le>j;  k\<le>l |] ==> i + k \<le> j + (l::real)"
       
   228  by (rule Ring_and_Field.add_mono)
       
   229 
       
   230 lemma real_le_minus_iff: "(-s \<le> -r) = ((r::real) \<le> s)"
       
   231  by (rule Ring_and_Field.neg_le_iff_le)
       
   232 
       
   233 lemma real_le_square [simp]: "(0::real) \<le> x*x"
       
   234  by (rule Ring_and_Field.zero_le_square)
       
   235 
       
   236 
       
   237 subsection{*Division Lemmas*}
       
   238 
       
   239 (** Inverse of zero!  Useful to simplify certain equations **)
       
   240 
       
   241 lemma INVERSE_ZERO: "inverse 0 = (0::real)"
       
   242 apply (unfold real_inverse_def)
       
   243 apply (rule someI2)
       
   244 apply (auto simp add: real_zero_not_eq_one)
       
   245 done
       
   246 
       
   247 lemma DIVISION_BY_ZERO: "a / (0::real) = 0"
       
   248   by (simp add: real_divide_def INVERSE_ZERO)
       
   249 
       
   250 instance real :: division_by_zero
       
   251 proof
       
   252   fix x :: real
       
   253   show "inverse 0 = (0::real)" by (rule INVERSE_ZERO)
       
   254   show "x/0 = 0" by (rule DIVISION_BY_ZERO) 
       
   255 qed
       
   256 
       
   257 lemma real_mult_left_cancel: "(c::real) \<noteq> 0 ==> (c*a=c*b) = (a=b)"
       
   258 by auto
       
   259 
       
   260 lemma real_mult_right_cancel: "(c::real) \<noteq> 0 ==> (a*c=b*c) = (a=b)"
       
   261 by auto
       
   262 
       
   263 lemma real_mult_left_cancel_ccontr: "c*a \<noteq> c*b ==> a \<noteq> b"
       
   264 by auto
       
   265 
       
   266 lemma real_mult_right_cancel_ccontr: "a*c \<noteq> b*c ==> a \<noteq> b"
       
   267 by auto
       
   268 
       
   269 lemma real_inverse_not_zero: "x \<noteq> 0 ==> inverse(x::real) \<noteq> 0"
       
   270   by (rule Ring_and_Field.nonzero_imp_inverse_nonzero)
       
   271 
       
   272 lemma real_mult_not_zero: "[| x \<noteq> 0; y \<noteq> 0 |] ==> x * y \<noteq> (0::real)"
       
   273 by simp
       
   274 
       
   275 lemma real_inverse_1: "inverse((1::real)) = (1::real)"
       
   276   by (rule Ring_and_Field.inverse_1)
       
   277 
       
   278 lemma real_minus_inverse: "inverse(-x) = -inverse(x::real)"
       
   279   by (rule Ring_and_Field.inverse_minus_eq)
       
   280 
       
   281 lemma real_inverse_distrib: "inverse(x*y) = inverse(x)*inverse(y::real)"
       
   282   by (rule Ring_and_Field.inverse_mult_distrib)
       
   283 
       
   284 lemma real_add_divide_distrib: "(x+y)/(z::real) = x/z + y/z"
       
   285   by (rule Ring_and_Field.add_divide_distrib)
       
   286 
       
   287 
       
   288 subsection{*More Lemmas*}
       
   289 
       
   290 lemma real_add_right_cancel: "(y + (x::real)= z + x) = (y = z)"
       
   291   by (rule Ring_and_Field.add_right_cancel)
       
   292 
       
   293 lemma real_add_less_mono1: "v < (w::real) ==> v + z < w + z"
       
   294   by (rule Ring_and_Field.add_strict_right_mono)
       
   295 
       
   296 lemma real_add_le_mono1: "v \<le> (w::real) ==> v + z \<le> w + z"
       
   297   by (rule Ring_and_Field.add_right_mono)
       
   298 
       
   299 lemma real_add_less_le_mono: "[| w'<w; z'\<le>z |] ==> w' + z' < w + (z::real)"
       
   300 apply (erule add_strict_right_mono [THEN order_less_le_trans])
       
   301 apply (erule add_left_mono) 
       
   302 done
       
   303 
       
   304 lemma real_add_le_less_mono:
       
   305      "!!z z'::real. [| w'\<le>w; z'<z |] ==> w' + z' < w + z"
       
   306 apply (erule add_right_mono [THEN order_le_less_trans])
       
   307 apply (erule add_strict_left_mono) 
       
   308 done
       
   309 
       
   310 lemma real_less_add_right_cancel: "!!(A::real). A + C < B + C ==> A < B"
       
   311   by (rule Ring_and_Field.add_less_imp_less_right)
       
   312 
       
   313 lemma real_less_add_left_cancel: "!!(A::real). C + A < C + B ==> A < B"
       
   314   by (rule Ring_and_Field.add_less_imp_less_left)
       
   315 
       
   316 lemma real_le_add_right_cancel: "!!(A::real). A + C \<le> B + C ==> A \<le> B"
       
   317   by (rule Ring_and_Field.add_le_imp_le_right)
       
   318 
       
   319 lemma real_le_add_left_cancel: "!!(A::real). C + A \<le> C + B ==> A \<le> B"
       
   320   by (rule Ring_and_Field.add_le_imp_le_left)
       
   321 
       
   322 lemma real_add_right_cancel_less: "(v+z < w+z) = (v < (w::real))"
       
   323   by (rule Ring_and_Field.add_less_cancel_right)
       
   324 
       
   325 lemma real_add_left_cancel_less: "(z+v < z+w) = (v < (w::real))"
       
   326   by (rule Ring_and_Field.add_less_cancel_left)
       
   327 
       
   328 lemma real_add_right_cancel_le: "(v+z \<le> w+z) = (v \<le> (w::real))"
       
   329   by (rule Ring_and_Field.add_le_cancel_right)
       
   330 
       
   331 lemma real_add_left_cancel_le: "(z+v \<le> z+w) = (v \<le> (w::real))"
       
   332   by (rule Ring_and_Field.add_le_cancel_left)
       
   333 
       
   334 
       
   335 subsection{*Inverse and Division*}
       
   336 
       
   337 lemma real_inverse_gt_0: "0 < x ==> 0 < inverse (x::real)"
       
   338   by (rule Ring_and_Field.positive_imp_inverse_positive)
       
   339 
       
   340 lemma real_inverse_less_0: "x < 0 ==> inverse (x::real) < 0"
       
   341   by (rule Ring_and_Field.negative_imp_inverse_negative)
       
   342 
       
   343 lemma real_mult_less_mono1: "[| (0::real) < z; x < y |] ==> x*z < y*z"
       
   344  by (rule Ring_and_Field.mult_strict_right_mono)
       
   345 
       
   346 text{*The precondition could be weakened to @{term "0\<le>x"}*}
       
   347 lemma real_mult_less_mono:
       
   348      "[| u<v;  x<y;  (0::real) < v;  0 < x |] ==> u*x < v* y"
       
   349  by (simp add: Ring_and_Field.mult_strict_mono order_less_imp_le)
       
   350 
       
   351 lemma real_mult_less_iff1 [simp]: "(0::real) < z ==> (x*z < y*z) = (x < y)"
       
   352   by (force elim: order_less_asym
       
   353             simp add: Ring_and_Field.mult_less_cancel_right)
       
   354 
       
   355 lemma real_mult_le_cancel_iff1 [simp]: "(0::real) < z ==> (x*z \<le> y*z) = (x\<le>y)"
       
   356 by (auto simp add: real_le_def)
       
   357 
       
   358 lemma real_mult_le_cancel_iff2 [simp]: "(0::real) < z ==> (z*x \<le> z*y) = (x\<le>y)"
       
   359   by (force elim: order_less_asym
       
   360             simp add: Ring_and_Field.mult_le_cancel_left)
       
   361 
       
   362 text{*Only two uses?*}
       
   363 lemma real_mult_less_mono':
       
   364      "[| x < y;  r1 < r2;  (0::real) \<le> r1;  0 \<le> x|] ==> r1 * x < r2 * y"
       
   365  by (rule Ring_and_Field.mult_strict_mono')
       
   366 
       
   367 lemma real_inverse_less_swap:
       
   368      "[| 0 < r; r < x |] ==> inverse x < inverse (r::real)"
       
   369   by (rule Ring_and_Field.less_imp_inverse_less)
       
   370 
       
   371 (*FIXME: remove the [iff], since the general theorem is already [simp]*)
       
   372 lemma real_mult_is_0 [iff]: "(x*y = 0) = (x = 0 | y = (0::real))"
       
   373 by (rule Ring_and_Field.mult_eq_0_iff)
       
   374 
       
   375 lemma real_inverse_add:
       
   376      "[| x \<noteq> 0; y \<noteq> 0 |]  
       
   377       ==> inverse x + inverse y = (x + y) * inverse (x * (y::real))"
       
   378 by (simp add: Ring_and_Field.inverse_add mult_assoc)
       
   379 
       
   380 text{*FIXME: delete or at least combine the next two lemmas*}
       
   381 lemma real_sum_squares_cancel: "x * x + y * y = 0 ==> x = (0::real)"
       
   382 apply (drule Ring_and_Field.equals_zero_I [THEN sym])
       
   383 apply (cut_tac x = y in real_le_square) 
       
   384 apply (auto, drule real_le_anti_sym, auto)
       
   385 done
       
   386 
       
   387 lemma real_sum_squares_cancel2: "x * x + y * y = 0 ==> y = (0::real)"
       
   388 apply (rule_tac y = x in real_sum_squares_cancel)
       
   389 apply (simp add: real_add_commute)
       
   390 done
       
   391 
       
   392 
       
   393 subsection{*Convenient Biconditionals for Products of Signs*}
       
   394 
       
   395 lemma real_0_less_mult_iff: "((0::real) < x*y) = (0<x & 0<y | x<0 & y<0)"
       
   396   by (rule Ring_and_Field.zero_less_mult_iff) 
       
   397 
       
   398 lemma real_0_le_mult_iff: "((0::real)\<le>x*y) = (0\<le>x & 0\<le>y | x\<le>0 & y\<le>0)"
       
   399   by (rule Ring_and_Field.zero_le_mult_iff) 
       
   400 
       
   401 lemma real_mult_less_0_iff: "(x*y < (0::real)) = (0<x & y<0 | x<0 & 0<y)"
       
   402   by (rule Ring_and_Field.mult_less_0_iff) 
       
   403 
       
   404 lemma real_mult_le_0_iff: "(x*y \<le> (0::real)) = (0\<le>x & y\<le>0 | x\<le>0 & 0\<le>y)"
       
   405   by (rule Ring_and_Field.mult_le_0_iff) 
       
   406 
       
   407 subsection{*Hardly Used Theorems to be Deleted*}
       
   408 
       
   409 lemma real_add_less_mono2: "!!(A::real). A < B ==> C + A < C + B"
       
   410 by simp
       
   411 
       
   412 lemma real_add_order: "[| 0 < x; 0 < y |] ==> (0::real) < x + y"
       
   413 apply (erule order_less_trans)
       
   414 apply (drule real_add_less_mono2, simp)
       
   415 done
       
   416 
       
   417 lemma real_le_add_order: "[| 0 \<le> x; 0 \<le> y |] ==> (0::real) \<le> x + y"
       
   418 apply (drule order_le_imp_less_or_eq)+
       
   419 apply (auto intro: real_add_order order_less_imp_le)
       
   420 done
       
   421 
       
   422 
       
   423 subsection{*An Embedding of the Naturals in the Reals*}
       
   424 
       
   425 lemma real_of_posnat_one: "real_of_posnat 0 = (1::real)"
       
   426 by (simp add: real_of_posnat_def pnat_one_iff [symmetric]
       
   427               real_of_preal_def symmetric real_one_def)
       
   428 
       
   429 lemma real_of_posnat_two: "real_of_posnat (Suc 0) = (1::real) + (1::real)"
       
   430 by (simp add: real_of_posnat_def real_of_preal_def real_one_def pnat_two_eq
       
   431                  real_add
       
   432             prat_of_pnat_add [symmetric] preal_of_prat_add [symmetric]
       
   433             pnat_add_ac)
       
   434 
       
   435 lemma real_of_posnat_add: 
       
   436      "real_of_posnat n1 + real_of_posnat n2 = real_of_posnat (n1 + n2) + (1::real)"
       
   437 apply (unfold real_of_posnat_def)
       
   438 apply (simp (no_asm_use) add: real_of_posnat_one [symmetric] real_of_posnat_def real_of_preal_add [symmetric] preal_of_prat_add [symmetric] prat_of_pnat_add [symmetric] pnat_of_nat_add)
       
   439 done
       
   440 
       
   441 lemma real_of_posnat_add_one:
       
   442      "real_of_posnat (n + 1) = real_of_posnat n + (1::real)"
       
   443 apply (rule_tac x1 = " (1::real) " in real_add_right_cancel [THEN iffD1])
       
   444 apply (rule real_of_posnat_add [THEN subst])
       
   445 apply (simp (no_asm_use) add: real_of_posnat_two real_add_assoc)
       
   446 done
       
   447 
       
   448 lemma real_of_posnat_Suc:
       
   449      "real_of_posnat (Suc n) = real_of_posnat n + (1::real)"
       
   450 by (subst real_of_posnat_add_one [symmetric], simp)
       
   451 
       
   452 lemma inj_real_of_posnat: "inj(real_of_posnat)"
       
   453 apply (rule inj_onI)
       
   454 apply (unfold real_of_posnat_def)
       
   455 apply (drule inj_real_of_preal [THEN injD])
       
   456 apply (drule inj_preal_of_prat [THEN injD])
       
   457 apply (drule inj_prat_of_pnat [THEN injD])
       
   458 apply (erule inj_pnat_of_nat [THEN injD])
       
   459 done
       
   460 
       
   461 lemma real_of_nat_zero [simp]: "real (0::nat) = 0"
       
   462 by (simp add: real_of_nat_def real_of_posnat_one)
       
   463 
       
   464 lemma real_of_nat_one [simp]: "real (Suc 0) = (1::real)"
       
   465 by (simp add: real_of_nat_def real_of_posnat_two real_add_assoc)
       
   466 
       
   467 lemma real_of_nat_add [simp]: 
       
   468      "real (m + n) = real (m::nat) + real n"
       
   469 apply (simp add: real_of_nat_def add_ac)
       
   470 apply (simp add: real_of_posnat_add add_assoc [symmetric])
       
   471 apply (simp add: add_commute) 
       
   472 apply (simp add: add_assoc [symmetric])
       
   473 done
       
   474 
       
   475 (*Not for addsimps: often the LHS is used to represent a positive natural*)
       
   476 lemma real_of_nat_Suc: "real (Suc n) = real n + (1::real)"
       
   477 by (simp add: real_of_nat_def real_of_posnat_Suc real_add_ac)
       
   478 
       
   479 lemma real_of_nat_less_iff [iff]: 
       
   480      "(real (n::nat) < real m) = (n < m)"
       
   481 by (auto simp add: real_of_nat_def real_of_posnat_def)
       
   482 
       
   483 lemma real_of_nat_le_iff [iff]: "(real (n::nat) \<le> real m) = (n \<le> m)"
       
   484 by (simp add: linorder_not_less [symmetric])
       
   485 
       
   486 lemma inj_real_of_nat: "inj (real :: nat => real)"
       
   487 apply (rule inj_onI)
       
   488 apply (auto intro!: inj_real_of_posnat [THEN injD]
       
   489             simp add: real_of_nat_def real_add_right_cancel)
       
   490 done
       
   491 
       
   492 lemma real_of_nat_ge_zero [iff]: "0 \<le> real (n::nat)"
       
   493 apply (induct_tac "n")
       
   494 apply (auto simp add: real_of_nat_Suc)
       
   495 apply (drule real_add_le_less_mono)
       
   496 apply (rule real_zero_less_one)
       
   497 apply (simp add: order_less_imp_le)
       
   498 done
       
   499 
       
   500 lemma real_of_nat_mult [simp]: "real (m * n) = real (m::nat) * real n"
       
   501 apply (induct_tac "m")
       
   502 apply (auto simp add: real_of_nat_Suc real_add_mult_distrib real_add_commute)
       
   503 done
       
   504 
       
   505 lemma real_of_nat_inject [iff]: "(real (n::nat) = real m) = (n = m)"
       
   506 by (auto dest: inj_real_of_nat [THEN injD])
       
   507 
       
   508 lemma real_of_nat_diff [rule_format]:
       
   509      "n \<le> m --> real (m - n) = real (m::nat) - real n"
       
   510 apply (induct_tac "m", simp)
       
   511 apply (simp add: real_diff_def Suc_diff_le le_Suc_eq real_of_nat_Suc add_ac)
       
   512 apply (simp add: add_left_commute [of _ "- 1"]) 
       
   513 done
       
   514 
       
   515 lemma real_of_nat_zero_iff: "(real (n::nat) = 0) = (n = 0)"
       
   516   proof 
       
   517     assume "real n = 0"
       
   518     have "real n = real (0::nat)" by simp
       
   519     then show "n = 0" by (simp only: real_of_nat_inject)
       
   520   next
       
   521     show "n = 0 \<Longrightarrow> real n = 0" by simp
       
   522   qed
       
   523 
       
   524 lemma real_of_nat_neg_int [simp]: "neg z ==> real (nat z) = 0"
       
   525 by (simp add: neg_nat real_of_nat_zero)
       
   526 
       
   527 
       
   528 lemma real_mult_le_le_mono1: "[| (0::real) <=z; x<=y |] ==> z*x<=z*y"
       
   529   by (rule Ring_and_Field.mult_left_mono)
       
   530 
       
   531 lemma real_mult_le_le_mono2: "[| (0::real)<=z; x<=y |] ==> x*z<=y*z"
       
   532   by (rule Ring_and_Field.mult_right_mono)
       
   533 
       
   534 (*Used just below and in HahnBanach/Aux.thy*)
       
   535 lemma real_mult_le_less_mono1: "[| (0::real) \<le> z; x < y |] ==> x*z \<le> y*z"
       
   536 apply (rule real_less_or_eq_imp_le)
       
   537 apply (drule order_le_imp_less_or_eq)
       
   538 apply (auto intro: real_mult_less_mono1)
       
   539 done
       
   540 
       
   541 lemma real_inverse_unique: "x*y = (1::real) ==> y = inverse x"
       
   542 apply (case_tac "x \<noteq> 0")
       
   543 apply (rule_tac c1 = x in real_mult_left_cancel [THEN iffD1], auto)
       
   544 done
       
   545 
       
   546 lemma real_inverse_gt_one: "[| (0::real) < x; x < 1 |] ==> 1 < inverse x"
       
   547 by (auto dest: real_inverse_less_swap)
       
   548 
       
   549 lemma real_of_nat_gt_zero_cancel_iff: "(0 < real (n::nat)) = (0 < n)"
       
   550 by (rule real_of_nat_less_iff [THEN subst], auto)
       
   551 declare real_of_nat_gt_zero_cancel_iff [simp]
       
   552 
       
   553 lemma real_of_nat_le_zero_cancel_iff: "(real (n::nat) <= 0) = (n = 0)"
       
   554 apply (rule real_of_nat_zero [THEN subst])
       
   555 apply (subst real_of_nat_le_iff, auto)
       
   556 done
       
   557 declare real_of_nat_le_zero_cancel_iff [simp]
       
   558 
       
   559 lemma not_real_of_nat_less_zero: "~ real (n::nat) < 0"
       
   560 apply (simp (no_asm) add: real_le_def [symmetric] real_of_nat_ge_zero)
       
   561 done
       
   562 declare not_real_of_nat_less_zero [simp]
       
   563 
       
   564 lemma real_of_nat_ge_zero_cancel_iff: 
       
   565       "(0 <= real (n::nat)) = (0 <= n)"
       
   566 apply (unfold real_le_def le_def)
       
   567 apply (simp (no_asm))
       
   568 done
       
   569 declare real_of_nat_ge_zero_cancel_iff [simp]
       
   570 
       
   571 lemma real_of_nat_num_if:
       
   572      "real n = (if n=0 then 0 else 1 + real ((n::nat) - 1))"
       
   573 apply (case_tac "n", simp) 
       
   574 apply (simp add: real_of_nat_Suc add_commute)
       
   575 done
       
   576 
       
   577 lemma real_mult_self_sum_ge_zero: "(0::real) \<le> x*x + y*y"
       
   578 proof -
       
   579   have "0 + 0 \<le> x*x + y*y" by (blast intro: add_mono zero_le_square)
       
   580   thus ?thesis by simp
       
   581 qed
       
   582 
       
   583 declare real_mult_self_sum_ge_zero [simp]
       
   584 
       
   585 ML
       
   586 {*
       
   587 val real_abs_def = thm "real_abs_def";
       
   588 
       
   589 val real_less_eq_diff = thm "real_less_eq_diff";
       
   590 
       
   591 val real_add_right_cancel = thm"real_add_right_cancel";
       
   592 val real_mult_congruent2_lemma = thm"real_mult_congruent2_lemma";
       
   593 val real_mult_congruent2 = thm"real_mult_congruent2";
       
   594 val real_mult = thm"real_mult";
       
   595 val real_mult_commute = thm"real_mult_commute";
       
   596 val real_mult_assoc = thm"real_mult_assoc";
       
   597 val real_mult_left_commute = thm"real_mult_left_commute";
       
   598 val real_mult_1 = thm"real_mult_1";
       
   599 val real_mult_1_right = thm"real_mult_1_right";
       
   600 val real_mult_0 = thm"real_mult_0";
       
   601 val real_mult_0_right = thm"real_mult_0_right";
       
   602 val real_mult_minus_eq1 = thm"real_mult_minus_eq1";
       
   603 val real_minus_mult_eq1 = thm"real_minus_mult_eq1";
       
   604 val real_mult_minus_eq2 = thm"real_mult_minus_eq2";
       
   605 val real_minus_mult_eq2 = thm"real_minus_mult_eq2";
       
   606 val real_mult_minus_1 = thm"real_mult_minus_1";
       
   607 val real_mult_minus_1_right = thm"real_mult_minus_1_right";
       
   608 val real_minus_mult_cancel = thm"real_minus_mult_cancel";
       
   609 val real_minus_mult_commute = thm"real_minus_mult_commute";
       
   610 val real_add_assoc_cong = thm"real_add_assoc_cong";
       
   611 val real_add_mult_distrib = thm"real_add_mult_distrib";
       
   612 val real_add_mult_distrib2 = thm"real_add_mult_distrib2";
       
   613 val real_diff_mult_distrib = thm"real_diff_mult_distrib";
       
   614 val real_diff_mult_distrib2 = thm"real_diff_mult_distrib2";
       
   615 val real_zero_not_eq_one = thm"real_zero_not_eq_one";
       
   616 val real_zero_iff = thm"real_zero_iff";
       
   617 val preal_le_linear = thm"preal_le_linear";
       
   618 val real_mult_inv_right_ex = thm"real_mult_inv_right_ex";
       
   619 val real_mult_inv_left_ex = thm"real_mult_inv_left_ex";
       
   620 val real_mult_inv_left = thm"real_mult_inv_left";
       
   621 val real_mult_inv_right = thm"real_mult_inv_right";
       
   622 val preal_lemma_eq_rev_sum = thm"preal_lemma_eq_rev_sum";
       
   623 val preal_add_left_commute_cancel = thm"preal_add_left_commute_cancel";
       
   624 val preal_lemma_for_not_refl = thm"preal_lemma_for_not_refl";
       
   625 val real_less_not_refl = thm"real_less_not_refl";
       
   626 val real_less_irrefl = thm"real_less_irrefl";
       
   627 val real_not_refl2 = thm"real_not_refl2";
       
   628 val preal_lemma_trans = thm"preal_lemma_trans";
       
   629 val real_less_trans = thm"real_less_trans";
       
   630 val real_less_not_sym = thm"real_less_not_sym";
       
   631 val real_less_asym = thm"real_less_asym";
       
   632 val real_of_preal_add = thm"real_of_preal_add";
       
   633 val real_of_preal_mult = thm"real_of_preal_mult";
       
   634 val real_of_preal_ExI = thm"real_of_preal_ExI";
       
   635 val real_of_preal_ExD = thm"real_of_preal_ExD";
       
   636 val real_of_preal_iff = thm"real_of_preal_iff";
       
   637 val real_of_preal_trichotomy = thm"real_of_preal_trichotomy";
       
   638 val real_of_preal_trichotomyE = thm"real_of_preal_trichotomyE";
       
   639 val real_of_preal_lessD = thm"real_of_preal_lessD";
       
   640 val real_of_preal_lessI = thm"real_of_preal_lessI";
       
   641 val real_of_preal_less_iff1 = thm"real_of_preal_less_iff1";
       
   642 val real_of_preal_minus_less_self = thm"real_of_preal_minus_less_self";
       
   643 val real_of_preal_minus_less_zero = thm"real_of_preal_minus_less_zero";
       
   644 val real_of_preal_not_minus_gt_zero = thm"real_of_preal_not_minus_gt_zero";
       
   645 val real_of_preal_zero_less = thm"real_of_preal_zero_less";
       
   646 val real_of_preal_not_less_zero = thm"real_of_preal_not_less_zero";
       
   647 val real_minus_minus_zero_less = thm"real_minus_minus_zero_less";
       
   648 val real_of_preal_sum_zero_less = thm"real_of_preal_sum_zero_less";
       
   649 val real_of_preal_minus_less_all = thm"real_of_preal_minus_less_all";
       
   650 val real_of_preal_not_minus_gt_all = thm"real_of_preal_not_minus_gt_all";
       
   651 val real_of_preal_minus_less_rev1 = thm"real_of_preal_minus_less_rev1";
       
   652 val real_of_preal_minus_less_rev2 = thm"real_of_preal_minus_less_rev2";
       
   653 val real_of_preal_minus_less_rev_iff = thm"real_of_preal_minus_less_rev_iff";
       
   654 val real_linear = thm"real_linear";
       
   655 val real_neq_iff = thm"real_neq_iff";
       
   656 val real_linear_less2 = thm"real_linear_less2";
       
   657 val real_leI = thm"real_leI";
       
   658 val real_leD = thm"real_leD";
       
   659 val not_real_leE = thm"not_real_leE";
       
   660 val real_le_imp_less_or_eq = thm"real_le_imp_less_or_eq";
       
   661 val real_less_or_eq_imp_le = thm"real_less_or_eq_imp_le";
       
   662 val real_le_less = thm"real_le_less";
       
   663 val real_le_refl = thm"real_le_refl";
       
   664 val real_le_linear = thm"real_le_linear";
       
   665 val real_le_trans = thm"real_le_trans";
       
   666 val real_le_anti_sym = thm"real_le_anti_sym";
       
   667 val real_less_le = thm"real_less_le";
       
   668 val real_minus_zero_less_iff = thm"real_minus_zero_less_iff";
       
   669 val real_minus_zero_less_iff2 = thm"real_minus_zero_less_iff2";
       
   670 val real_less_add_positive_left_Ex = thm"real_less_add_positive_left_Ex";
       
   671 val real_less_sum_gt_zero = thm"real_less_sum_gt_zero";
       
   672 val real_sum_gt_zero_less = thm"real_sum_gt_zero_less";
       
   673 
       
   674 val real_gt_zero_preal_Ex = thm "real_gt_zero_preal_Ex";
       
   675 val real_gt_preal_preal_Ex = thm "real_gt_preal_preal_Ex";
       
   676 val real_ge_preal_preal_Ex = thm "real_ge_preal_preal_Ex";
       
   677 val real_less_all_preal = thm "real_less_all_preal";
       
   678 val real_less_all_real2 = thm "real_less_all_real2";
       
   679 val real_of_preal_le_iff = thm "real_of_preal_le_iff";
       
   680 val real_mult_order = thm "real_mult_order";
       
   681 val real_zero_less_one = thm "real_zero_less_one";
       
   682 val real_add_right_cancel_less = thm "real_add_right_cancel_less";
       
   683 val real_add_left_cancel_less = thm "real_add_left_cancel_less";
       
   684 val real_add_right_cancel_le = thm "real_add_right_cancel_le";
       
   685 val real_add_left_cancel_le = thm "real_add_left_cancel_le";
       
   686 val real_add_less_mono1 = thm "real_add_less_mono1";
       
   687 val real_add_le_mono1 = thm "real_add_le_mono1";
       
   688 val real_add_less_le_mono = thm "real_add_less_le_mono";
       
   689 val real_add_le_less_mono = thm "real_add_le_less_mono";
       
   690 val real_add_less_mono2 = thm "real_add_less_mono2";
       
   691 val real_less_add_right_cancel = thm "real_less_add_right_cancel";
       
   692 val real_less_add_left_cancel = thm "real_less_add_left_cancel";
       
   693 val real_le_add_right_cancel = thm "real_le_add_right_cancel";
       
   694 val real_le_add_left_cancel = thm "real_le_add_left_cancel";
       
   695 val real_add_order = thm "real_add_order";
       
   696 val real_le_add_order = thm "real_le_add_order";
       
   697 val real_add_less_mono = thm "real_add_less_mono";
       
   698 val real_add_le_mono = thm "real_add_le_mono";
       
   699 val real_le_minus_iff = thm "real_le_minus_iff";
       
   700 val real_le_square = thm "real_le_square";
       
   701 val real_mult_less_mono1 = thm "real_mult_less_mono1";
       
   702 val real_mult_less_mono2 = thm "real_mult_less_mono2";
       
   703 
       
   704 val real_inverse_gt_0 = thm "real_inverse_gt_0";
       
   705 val real_inverse_less_0 = thm "real_inverse_less_0";
       
   706 val real_mult_less_iff1 = thm "real_mult_less_iff1";
       
   707 val real_mult_le_cancel_iff1 = thm "real_mult_le_cancel_iff1";
       
   708 val real_mult_le_cancel_iff2 = thm "real_mult_le_cancel_iff2";
       
   709 val real_mult_less_mono = thm "real_mult_less_mono";
       
   710 val real_mult_less_mono' = thm "real_mult_less_mono'";
       
   711 val real_inverse_less_swap = thm "real_inverse_less_swap";
       
   712 val real_mult_is_0 = thm "real_mult_is_0";
       
   713 val real_inverse_add = thm "real_inverse_add";
       
   714 val real_sum_squares_cancel = thm "real_sum_squares_cancel";
       
   715 val real_sum_squares_cancel2 = thm "real_sum_squares_cancel2";
       
   716 val real_0_less_mult_iff = thm "real_0_less_mult_iff";
       
   717 val real_0_le_mult_iff = thm "real_0_le_mult_iff";
       
   718 val real_mult_less_0_iff = thm "real_mult_less_0_iff";
       
   719 val real_mult_le_0_iff = thm "real_mult_le_0_iff";
       
   720 
       
   721 val INVERSE_ZERO = thm"INVERSE_ZERO";
       
   722 val DIVISION_BY_ZERO = thm"DIVISION_BY_ZERO";
       
   723 val real_mult_left_cancel = thm"real_mult_left_cancel";
       
   724 val real_mult_right_cancel = thm"real_mult_right_cancel";
       
   725 val real_mult_left_cancel_ccontr = thm"real_mult_left_cancel_ccontr";
       
   726 val real_mult_right_cancel_ccontr = thm"real_mult_right_cancel_ccontr";
       
   727 val real_inverse_not_zero = thm"real_inverse_not_zero";
       
   728 val real_mult_not_zero = thm"real_mult_not_zero";
       
   729 val real_inverse_1 = thm"real_inverse_1";
       
   730 val real_minus_inverse = thm"real_minus_inverse";
       
   731 val real_inverse_distrib = thm"real_inverse_distrib";
       
   732 val real_add_divide_distrib = thm"real_add_divide_distrib";
       
   733 
       
   734 val real_of_posnat_one = thm "real_of_posnat_one";
       
   735 val real_of_posnat_two = thm "real_of_posnat_two";
       
   736 val real_of_posnat_add = thm "real_of_posnat_add";
       
   737 val real_of_posnat_add_one = thm "real_of_posnat_add_one";
       
   738 val real_of_posnat_Suc = thm "real_of_posnat_Suc";
       
   739 val inj_real_of_posnat = thm "inj_real_of_posnat";
       
   740 val real_of_nat_zero = thm "real_of_nat_zero";
       
   741 val real_of_nat_one = thm "real_of_nat_one";
       
   742 val real_of_nat_add = thm "real_of_nat_add";
       
   743 val real_of_nat_Suc = thm "real_of_nat_Suc";
       
   744 val real_of_nat_less_iff = thm "real_of_nat_less_iff";
       
   745 val real_of_nat_le_iff = thm "real_of_nat_le_iff";
       
   746 val inj_real_of_nat = thm "inj_real_of_nat";
       
   747 val real_of_nat_ge_zero = thm "real_of_nat_ge_zero";
       
   748 val real_of_nat_mult = thm "real_of_nat_mult";
       
   749 val real_of_nat_inject = thm "real_of_nat_inject";
       
   750 val real_of_nat_diff = thm "real_of_nat_diff";
       
   751 val real_of_nat_zero_iff = thm "real_of_nat_zero_iff";
       
   752 val real_of_nat_neg_int = thm "real_of_nat_neg_int";
       
   753 
       
   754 val real_mult_le_le_mono1 = thm "real_mult_le_le_mono1";
       
   755 val real_mult_le_le_mono2 = thm "real_mult_le_le_mono2";
       
   756 val real_inverse_unique = thm "real_inverse_unique";
       
   757 val real_inverse_gt_one = thm "real_inverse_gt_one";
       
   758 val real_of_nat_gt_zero_cancel_iff = thm "real_of_nat_gt_zero_cancel_iff";
       
   759 val real_of_nat_le_zero_cancel_iff = thm "real_of_nat_le_zero_cancel_iff";
       
   760 val not_real_of_nat_less_zero = thm "not_real_of_nat_less_zero";
       
   761 val real_of_nat_ge_zero_cancel_iff = thm "real_of_nat_ge_zero_cancel_iff";
       
   762 val real_of_nat_num_if = thm "real_of_nat_num_if";
       
   763 
       
   764 val real_minus_add_distrib = thm"real_minus_add_distrib";
       
   765 val real_add_left_cancel = thm"real_add_left_cancel";
       
   766 val real_mult_self_sum_ge_zero = thm "real_mult_self_sum_ge_zero";
       
   767 *}
       
   768 
       
   769 end