src/HOL/Analysis/L2_Norm.thy
changeset 82522 62afd98e3f3e
parent 82489 d35d355f7330
equal deleted inserted replaced
82521:819688d4cc45 82522:62afd98e3f3e
    57   by (simp add: sum_strict_mono power_strict_mono assms)
    57   by (simp add: sum_strict_mono power_strict_mono assms)
    58 
    58 
    59 lemma L2_set_right_distrib:
    59 lemma L2_set_right_distrib:
    60   "0 \<le> r \<Longrightarrow> r * L2_set f A = L2_set (\<lambda>x. r * f x) A"
    60   "0 \<le> r \<Longrightarrow> r * L2_set f A = L2_set (\<lambda>x. r * f x) A"
    61   unfolding L2_set_def
    61   unfolding L2_set_def
    62   apply (simp add: power_mult_distrib)
    62   by (simp add: power_mult_distrib real_sqrt_mult sum_nonneg flip: sum_distrib_left)
    63   apply (simp add: sum_distrib_left [symmetric])
       
    64   apply (simp add: real_sqrt_mult sum_nonneg)
       
    65   done
       
    66 
    63 
    67 lemma L2_set_left_distrib:
    64 lemma L2_set_left_distrib:
    68   "0 \<le> r \<Longrightarrow> L2_set f A * r = L2_set (\<lambda>x. f x * r) A"
    65   "0 \<le> r \<Longrightarrow> L2_set f A * r = L2_set (\<lambda>x. f x * r) A"
    69   unfolding L2_set_def power_mult_distrib
    66   unfolding L2_set_def power_mult_distrib
    70   by (simp add: real_sqrt_mult sum_nonneg flip: sum_distrib_right)
    67   by (simp add: real_sqrt_mult sum_nonneg flip: sum_distrib_right)