src/ZF/ZF.thy
changeset 1106 62bdb9e5722b
parent 690 b2bd1d5a3d16
child 1116 7fca5aabcbb0
equal deleted inserted replaced
1105:136b05aa77ed 1106:62bdb9e5722b
     4     Copyright   1993  University of Cambridge
     4     Copyright   1993  University of Cambridge
     5 
     5 
     6 Zermelo-Fraenkel Set Theory
     6 Zermelo-Fraenkel Set Theory
     7 *)
     7 *)
     8 
     8 
     9 ZF = FOL +
     9 ZF = FOL + Let + 
    10 
    10 
    11 types
    11 types
    12   i
    12   i
    13 
    13 
    14 arities
    14 arities
    47 
    47 
    48   (* Ordered Pairing *)
    48   (* Ordered Pairing *)
    49 
    49 
    50   Pair        :: "[i, i] => i"
    50   Pair        :: "[i, i] => i"
    51   fst, snd    :: "i => i"
    51   fst, snd    :: "i => i"
    52   split       :: "[[i, i] => i, i] => i"
    52   split       :: "[[i, i] => 'a, i] => 'a::logic"  (*for pattern-matching*)
    53   fsplit      :: "[[i, i] => o, i] => o"
       
    54 
    53 
    55   (* Sigma and Pi Operators *)
    54   (* Sigma and Pi Operators *)
    56 
    55 
    57   Sigma, Pi   :: "[i, i => i] => i"
    56   Sigma, Pi   :: "[i, i => i] => i"
    58 
    57 
    81 (*"~:"        :: "[i, i] => o"    (infixl 50) (*negated membership relation*)*)
    80 (*"~:"        :: "[i, i] => o"    (infixl 50) (*negated membership relation*)*)
    82 
    81 
    83 
    82 
    84 types
    83 types
    85   is
    84   is
       
    85   pttrns
    86 
    86 
    87 syntax
    87 syntax
    88   ""          :: "i => is"                 ("_")
    88   ""          :: "i => is"                   ("_")
    89   "@Enum"     :: "[i, is] => is"           ("_,/ _")
    89   "@Enum"     :: "[i, is] => is"             ("_,/ _")
    90   "~:"        :: "[i, i] => o"             (infixl 50)
    90   "~:"        :: "[i, i] => o"               (infixl 50)
    91   "@Finset"   :: "is => i"                 ("{(_)}")
    91   "@Finset"   :: "is => i"                   ("{(_)}")
    92   "@Tuple"    :: "[i, is] => i"            ("<(_,/ _)>")
    92   "@Tuple"    :: "[i, is] => i"              ("<(_,/ _)>")
    93   "@Collect"  :: "[idt, i, o] => i"        ("(1{_: _ ./ _})")
    93   "@Collect"  :: "[pttrn, i, o] => i"        ("(1{_: _ ./ _})")
    94   "@Replace"  :: "[idt, idt, i, o] => i"   ("(1{_ ./ _: _, _})")
    94   "@Replace"  :: "[pttrn, pttrn, i, o] => i" ("(1{_ ./ _: _, _})")
    95   "@RepFun"   :: "[i, idt, i] => i"        ("(1{_ ./ _: _})" [51,0,51])
    95   "@RepFun"   :: "[i, pttrn, i] => i"        ("(1{_ ./ _: _})" [51,0,51])
    96   "@INTER"    :: "[idt, i, i] => i"        ("(3INT _:_./ _)" 10)
    96   "@INTER"    :: "[pttrn, i, i] => i"        ("(3INT _:_./ _)" 10)
    97   "@UNION"    :: "[idt, i, i] => i"        ("(3UN _:_./ _)" 10)
    97   "@UNION"    :: "[pttrn, i, i] => i"        ("(3UN _:_./ _)" 10)
    98   "@PROD"     :: "[idt, i, i] => i"        ("(3PROD _:_./ _)" 10)
    98   "@PROD"     :: "[pttrn, i, i] => i"        ("(3PROD _:_./ _)" 10)
    99   "@SUM"      :: "[idt, i, i] => i"        ("(3SUM _:_./ _)" 10)
    99   "@SUM"      :: "[pttrn, i, i] => i"        ("(3SUM _:_./ _)" 10)
   100   "->"        :: "[i, i] => i"             (infixr 60)
   100   "->"        :: "[i, i] => i"               (infixr 60)
   101   "*"         :: "[i, i] => i"             (infixr 80)
   101   "*"         :: "[i, i] => i"               (infixr 80)
   102   "@lam"      :: "[idt, i, i] => i"        ("(3lam _:_./ _)" 10)
   102   "@lam"      :: "[pttrn, i, i] => i"        ("(3lam _:_./ _)" 10)
   103   "@Ball"     :: "[idt, i, o] => o"        ("(3ALL _:_./ _)" 10)
   103   "@Ball"     :: "[pttrn, i, o] => o"        ("(3ALL _:_./ _)" 10)
   104   "@Bex"      :: "[idt, i, o] => o"        ("(3EX _:_./ _)" 10)
   104   "@Bex"      :: "[pttrn, i, o] => o"        ("(3EX _:_./ _)" 10)
       
   105 
       
   106   (** Patterns -- extends pre-defined type "pttrn" used in abstractions **)
       
   107 
       
   108   "@pttrn"  :: "pttrns => pttrn"            ("<_>")
       
   109   ""        :: " pttrn           => pttrns" ("_")
       
   110   "@pttrns" :: "[pttrn,pttrns]   => pttrns" ("_,/_")
   105 
   111 
   106 translations
   112 translations
   107   "x ~: y"      == "~ (x : y)"
   113   "x ~: y"      == "~ (x : y)"
   108   "{x, xs}"     == "cons(x, {xs})"
   114   "{x, xs}"     == "cons(x, {xs})"
   109   "{x}"         == "cons(x, 0)"
   115   "{x}"         == "cons(x, 0)"
   110   "<x, y, z>"   == "<x, <y, z>>"
       
   111   "<x, y>"      == "Pair(x, y)"
       
   112   "{x:A. P}"    == "Collect(A, %x. P)"
   116   "{x:A. P}"    == "Collect(A, %x. P)"
   113   "{y. x:A, Q}" == "Replace(A, %x y. Q)"
   117   "{y. x:A, Q}" == "Replace(A, %x y. Q)"
   114   "{b. x:A}"    == "RepFun(A, %x. b)"
   118   "{b. x:A}"    == "RepFun(A, %x. b)"
   115   "INT x:A. B"  == "Inter({B. x:A})"
   119   "INT x:A. B"  == "Inter({B. x:A})"
   116   "UN x:A. B"   == "Union({B. x:A})"
   120   "UN x:A. B"   == "Union({B. x:A})"
   120   "A * B"       => "Sigma(A, _K(B))"
   124   "A * B"       => "Sigma(A, _K(B))"
   121   "lam x:A. f"  == "Lambda(A, %x. f)"
   125   "lam x:A. f"  == "Lambda(A, %x. f)"
   122   "ALL x:A. P"  == "Ball(A, %x. P)"
   126   "ALL x:A. P"  == "Ball(A, %x. P)"
   123   "EX x:A. P"   == "Bex(A, %x. P)"
   127   "EX x:A. P"   == "Bex(A, %x. P)"
   124 
   128 
       
   129   "<x, y, z>"   == "<x, <y, z>>"
       
   130   "<x, y>"      == "Pair(x, y)"
       
   131   "%<x,y,zs>.b"   => "split(%x <y,zs>.b)"
       
   132   "%<x,y>.b"      => "split(%x y.b)"
       
   133 (* The <= direction fails if split has more than one argument because
       
   134    ast-matching fails.  Otherwise it would work fine *)
   125 
   135 
   126 defs
   136 defs
   127 
   137 
   128   (* Bounded Quantifiers *)
   138   (* Bounded Quantifiers *)
   129   Ball_def      "Ball(A, P) == ALL x. x:A --> P(x)"
   139   Ball_def      "Ball(A, P) == ALL x. x:A --> P(x)"
   189 
   199 
   190   (* Ordered pairs and disjoint union of a family of sets *)
   200   (* Ordered pairs and disjoint union of a family of sets *)
   191 
   201 
   192   (* this "symmetric" definition works better than {{a}, {a,b}} *)
   202   (* this "symmetric" definition works better than {{a}, {a,b}} *)
   193   Pair_def      "<a,b>  == {{a,a}, {a,b}}"
   203   Pair_def      "<a,b>  == {{a,a}, {a,b}}"
   194   fst_def       "fst == split(%x y.x)"
   204   fst_def       "fst(p) == THE a. EX b. p=<a,b>"
   195   snd_def       "snd == split(%x y.y)"
   205   snd_def       "snd(p) == THE b. EX a. p=<a,b>"
   196   split_def     "split(c,p) == THE y. EX a b. p=<a,b> & y=c(a,b)"
   206   split_def     "split(c,p) == c(fst(p), snd(p))"
   197   fsplit_def    "fsplit(R,z) == EX x y. z=<x,y> & R(x,y)"
       
   198   Sigma_def     "Sigma(A,B) == UN x:A. UN y:B(x). {<x,y>}"
   207   Sigma_def     "Sigma(A,B) == UN x:A. UN y:B(x). {<x,y>}"
   199 
   208 
   200   (* Operations on relations *)
   209   (* Operations on relations *)
   201 
   210 
   202   (*converse of relation r, inverse of function*)
   211   (*converse of relation r, inverse of function*)
   222 end
   231 end
   223 
   232 
   224 
   233 
   225 ML
   234 ML
   226 
   235 
   227 (* 'Dependent' type operators *)
   236 (* Pattern-matching and 'Dependent' type operators *)
   228 
   237 
   229 val print_translation =
   238 local open Syntax
   230   [("Pi", dependent_tr' ("@PROD", "op ->")),
   239 
       
   240 fun pttrn s = const"@pttrn" $ s;
       
   241 fun pttrns s t = const"@pttrns" $ s $ t;
       
   242 
       
   243 fun split2(Abs(x,T,t)) =
       
   244       let val (pats,u) = split1 t
       
   245       in (pttrns (Free(x,T)) pats, subst_bounds([free x],u)) end
       
   246   | split2(Const("split",_) $ r) =
       
   247       let val (pats,s) = split2(r)
       
   248           val (pats2,t) = split1(s)
       
   249       in (pttrns (pttrn pats) pats2, t) end
       
   250 and split1(Abs(x,T,t)) =  (Free(x,T), subst_bounds([free x],t))
       
   251   | split1(Const("split",_)$t) = split2(t);
       
   252 
       
   253 fun split_tr'(t::args) =
       
   254   let val (pats,ft) = split2(t)
       
   255   in list_comb(const"_lambda" $ pttrn pats $ ft, args) end;
       
   256 
       
   257 in
       
   258 
       
   259 val print_translation = 
       
   260   [("split", split_tr'),
       
   261    ("Pi",    dependent_tr' ("@PROD", "op ->")),
   231    ("Sigma", dependent_tr' ("@SUM", "op *"))];
   262    ("Sigma", dependent_tr' ("@SUM", "op *"))];
       
   263 
       
   264 end;