src/HOL/Quickcheck_Examples/Needham_Schroeder_Unguided_Attacker_Example.thy
changeset 48254 63e0ca00b952
parent 48243 b149de01d669
equal deleted inserted replaced
48253:4410a709913c 48254:63e0ca00b952
       
     1 theory Needham_Schroeder_Unguided_Attacker_Example
       
     2 imports Needham_Schroeder_Base
       
     3 begin
       
     4 
       
     5 inductive_set ns_public :: "event list set"
       
     6   where
       
     7          (*Initial trace is empty*)
       
     8    Nil:  "[] \<in> ns_public"
       
     9 
       
    10  | Fake:  "\<lbrakk>evs1 \<in> ns_public; X \<in> synth (analz (spies evs1)) \<rbrakk>
       
    11           \<Longrightarrow> Says Spy A X # evs1  \<in> ns_public"
       
    12 
       
    13          (*Alice initiates a protocol run, sending a nonce to Bob*)
       
    14  | NS1:  "\<lbrakk>evs1 \<in> ns_public;  Nonce NA \<notin> used evs1\<rbrakk>
       
    15           \<Longrightarrow> Says A B (Crypt (pubEK B) \<lbrace>Nonce NA, Agent A\<rbrace>)
       
    16                 # evs1  \<in>  ns_public"
       
    17          (*Bob responds to Alice's message with a further nonce*)
       
    18  | NS2:  "\<lbrakk>evs2 \<in> ns_public;  Nonce NB \<notin> used evs2;
       
    19            Says A' B (Crypt (pubEK B) \<lbrace>Nonce NA, Agent A\<rbrace>) \<in> set evs2\<rbrakk>
       
    20           \<Longrightarrow> Says B A (Crypt (pubEK A) \<lbrace>Nonce NA, Nonce NB\<rbrace>)
       
    21                 # evs2  \<in>  ns_public"
       
    22 
       
    23          (*Alice proves her existence by sending NB back to Bob.*)
       
    24  | NS3:  "\<lbrakk>evs3 \<in> ns_public;
       
    25            Says A  B (Crypt (pubEK B) \<lbrace>Nonce NA, Agent A\<rbrace>) \<in> set evs3;
       
    26            Says B' A (Crypt (pubEK A) \<lbrace>Nonce NA, Nonce NB\<rbrace>) \<in> set evs3\<rbrakk>
       
    27           \<Longrightarrow> Says A B (Crypt (pubEK B) (Nonce NB)) # evs3 \<in> ns_public"
       
    28 
       
    29 declare ListMem_iff[symmetric, code_pred_inline]
       
    30 
       
    31 lemmas [code_pred_intro] = ns_publicp.intros[folded synth'_def]
       
    32 
       
    33 code_pred [skip_proof] ns_publicp unfolding synth'_def by (rule ns_publicp.cases) fastforce+
       
    34 thm ns_publicp.equation
       
    35 
       
    36 code_pred [generator_cps] ns_publicp .
       
    37 thm ns_publicp.generator_cps_equation
       
    38 
       
    39 
       
    40 lemma "ns_publicp evs ==> \<not> (Says Alice Bob (Crypt (pubEK Bob) (Nonce NB))) : set evs"
       
    41 quickcheck[smart_exhaustive, depth = 5, timeout = 200, expect = counterexample]
       
    42 (*quickcheck[narrowing, size = 6, timeout = 200, verbose, expect = no_counterexample]*)
       
    43 oops
       
    44 
       
    45 lemma
       
    46   "\<lbrakk>ns_publicp evs\<rbrakk>            
       
    47        \<Longrightarrow> Says B A (Crypt (pubEK A) \<lbrace>Nonce NA, Nonce NB\<rbrace>) : set evs
       
    48        \<Longrightarrow> A \<noteq> Spy \<Longrightarrow> B \<noteq> Spy \<Longrightarrow> A \<noteq> B 
       
    49            \<Longrightarrow> Nonce NB \<notin> analz (spies evs)"
       
    50 quickcheck[smart_exhaustive, depth = 6, timeout = 100, expect = no_counterexample]
       
    51 (*quickcheck[narrowing, size = 7, timeout = 200, expect = no_counterexample]*)
       
    52 oops
       
    53 
       
    54 section {* Proving the counterexample trace for validation *}
       
    55 
       
    56 lemma
       
    57   assumes "A = Alice" "B = Bob" "C = Spy" "NA = 0" "NB = 1"
       
    58   assumes "evs = 
       
    59   [Says Alice Spy (Crypt (pubEK Spy) (Nonce 1)),
       
    60    Says Bob Alice (Crypt (pubEK Alice) {|Nonce 0, Nonce 1|}),
       
    61    Says Spy Bob (Crypt (pubEK Bob) {|Nonce 0, Agent Alice|}),
       
    62    Says Alice Spy (Crypt (pubEK Spy) {|Nonce 0, Agent Alice|})]" (is "_ = [?e3, ?e2, ?e1, ?e0]")
       
    63   shows "A \<noteq> Spy" "B \<noteq> Spy" "evs : ns_public" "Nonce NB : analz (knows Spy evs)"
       
    64 proof -
       
    65   from assms show "A \<noteq> Spy" by auto
       
    66   from assms show "B \<noteq> Spy" by auto
       
    67   have "[] : ns_public" by (rule Nil)
       
    68   then have first_step: "[?e0] : ns_public"
       
    69   proof (rule NS1)
       
    70     show "Nonce 0 ~: used []" by eval
       
    71   qed
       
    72   then have "[?e1, ?e0] : ns_public"
       
    73   proof (rule Fake)
       
    74     show "Crypt (pubEK Bob) {|Nonce 0, Agent Alice|} : synth (analz (knows Spy [?e0]))"
       
    75       by (intro synth.intros(2,3,4,1)) eval+
       
    76   qed
       
    77   then have "[?e2, ?e1, ?e0] : ns_public"
       
    78   proof (rule NS2)
       
    79     show "Says Spy Bob (Crypt (pubEK Bob) {|Nonce 0, Agent Alice|}) \<in> set [?e1, ?e0]" by simp
       
    80     show " Nonce 1 ~: used [?e1, ?e0]" by eval
       
    81   qed
       
    82   then show "evs : ns_public"
       
    83   unfolding assms
       
    84   proof (rule NS3)
       
    85     show "  Says Alice Spy (Crypt (pubEK Spy) {|Nonce 0, Agent Alice|}) \<in> set [?e2, ?e1, ?e0]" by simp
       
    86     show "Says Bob Alice (Crypt (pubEK Alice) {|Nonce 0, Nonce 1|}) : set [?e2, ?e1, ?e0]" by simp
       
    87   qed
       
    88   from assms show "Nonce NB : analz (knows Spy evs)"
       
    89     apply simp
       
    90     apply (rule analz.intros(4))
       
    91     apply (rule analz.intros(1))
       
    92     apply (auto simp add: bad_def)
       
    93     done
       
    94 qed
       
    95 
       
    96 end