src/HOL/Algebra/Bij.thy
changeset 14666 65f8680c3f16
parent 13945 5433b2755e98
child 14706 71590b7733b7
equal deleted inserted replaced
14665:d2e5df3d1201 14666:65f8680c3f16
     1 (*  Title:      HOL/Algebra/Bij
     1 (*  Title:      HOL/Algebra/Bij
     2     ID:         $Id$
     2     ID:         $Id$
     3     Author:     Florian Kammueller, with new proofs by L C Paulson
     3     Author:     Florian Kammueller, with new proofs by L C Paulson
     4 *)
     4 *)
     5 
     5 
     6 
     6 header {* Bijections of a Set, Permutation Groups, Automorphism Groups *}
     7 header{*Bijections of a Set, Permutation Groups, Automorphism Groups*} 
       
     8 
     7 
     9 theory Bij = Group:
     8 theory Bij = Group:
    10 
     9 
    11 constdefs
    10 constdefs
    12   Bij :: "'a set => (('a => 'a)set)" 
    11   Bij :: "'a set => ('a => 'a) set"
    13     --{*Only extensional functions, since otherwise we get too many.*}
    12     --{*Only extensional functions, since otherwise we get too many.*}
    14     "Bij S == extensional S \<inter> {f. f`S = S & inj_on f S}"
    13   "Bij S == extensional S \<inter> {f. f`S = S & inj_on f S}"
    15 
    14 
    16    BijGroup ::  "'a set => (('a => 'a) monoid)"
    15   BijGroup :: "'a set => ('a => 'a) monoid"
    17    "BijGroup S == (| carrier = Bij S, 
    16   "BijGroup S ==
    18 		     mult  = %g: Bij S. %f: Bij S. compose S g f,
    17     (| carrier = Bij S,
    19 		     one = %x: S. x |)"
    18       mult = %g: Bij S. %f: Bij S. compose S g f,
       
    19       one = %x: S. x |)"
    20 
    20 
    21 
    21 
    22 declare Id_compose [simp] compose_Id [simp]
    22 declare Id_compose [simp] compose_Id [simp]
    23 
    23 
    24 lemma Bij_imp_extensional: "f \<in> Bij S ==> f \<in> extensional S"
    24 lemma Bij_imp_extensional: "f \<in> Bij S ==> f \<in> extensional S"
    25 by (simp add: Bij_def)
    25   by (simp add: Bij_def)
    26 
    26 
    27 lemma Bij_imp_funcset: "f \<in> Bij S ==> f \<in> S -> S"
    27 lemma Bij_imp_funcset: "f \<in> Bij S ==> f \<in> S -> S"
    28 by (auto simp add: Bij_def Pi_def)
    28   by (auto simp add: Bij_def Pi_def)
    29 
    29 
    30 lemma Bij_imp_apply: "f \<in> Bij S ==> f ` S = S"
    30 lemma Bij_imp_apply: "f \<in> Bij S ==> f ` S = S"
    31 by (simp add: Bij_def)
    31   by (simp add: Bij_def)
    32 
    32 
    33 lemma Bij_imp_inj_on: "f \<in> Bij S ==> inj_on f S"
    33 lemma Bij_imp_inj_on: "f \<in> Bij S ==> inj_on f S"
    34 by (simp add: Bij_def)
    34   by (simp add: Bij_def)
    35 
    35 
    36 lemma BijI: "[| f \<in> extensional(S); f`S = S; inj_on f S |] ==> f \<in> Bij S"
    36 lemma BijI: "[| f \<in> extensional(S); f`S = S; inj_on f S |] ==> f \<in> Bij S"
    37 by (simp add: Bij_def)
    37   by (simp add: Bij_def)
    38 
    38 
    39 
    39 
    40 subsection{*Bijections Form a Group*}
    40 subsection {*Bijections Form a Group *}
    41 
    41 
    42 lemma restrict_Inv_Bij: "f \<in> Bij S ==> (%x:S. (Inv S f) x) \<in> Bij S"
    42 lemma restrict_Inv_Bij: "f \<in> Bij S ==> (%x:S. (Inv S f) x) \<in> Bij S"
    43 apply (simp add: Bij_def)
    43 apply (simp add: Bij_def)
    44 apply (intro conjI)
    44 apply (intro conjI)
    45 txt{*Proving @{term "restrict (Inv S f) S ` S = S"}*}
    45 txt{*Proving @{term "restrict (Inv S f) S ` S = S"}*}
    58 apply (auto simp add: inj_on_def)
    58 apply (auto simp add: inj_on_def)
    59 done
    59 done
    60 
    60 
    61 lemma compose_Bij: "[| x \<in> Bij S; y \<in> Bij S|] ==> compose S x y \<in> Bij S"
    61 lemma compose_Bij: "[| x \<in> Bij S; y \<in> Bij S|] ==> compose S x y \<in> Bij S"
    62 apply (rule BijI)
    62 apply (rule BijI)
    63   apply (simp add: compose_extensional) 
    63   apply (simp add: compose_extensional)
    64  apply (blast del: equalityI
    64  apply (blast del: equalityI
    65               intro: surj_compose dest: Bij_imp_apply Bij_imp_inj_on)
    65               intro: surj_compose dest: Bij_imp_apply Bij_imp_inj_on)
    66 apply (blast intro: inj_on_compose dest: Bij_imp_apply Bij_imp_inj_on)
    66 apply (blast intro: inj_on_compose dest: Bij_imp_apply Bij_imp_inj_on)
    67 done
    67 done
    68 
    68 
    69 lemma Bij_compose_restrict_eq:
    69 lemma Bij_compose_restrict_eq:
    70      "f \<in> Bij S ==> compose S (restrict (Inv S f) S) f = (\<lambda>x\<in>S. x)"
    70      "f \<in> Bij S ==> compose S (restrict (Inv S f) S) f = (\<lambda>x\<in>S. x)"
    71 apply (rule compose_Inv_id)
    71 apply (rule compose_Inv_id)
    72  apply (simp add: Bij_imp_inj_on)
    72  apply (simp add: Bij_imp_inj_on)
    73 apply (simp add: Bij_imp_apply) 
    73 apply (simp add: Bij_imp_apply)
    74 done
    74 done
    75 
    75 
    76 theorem group_BijGroup: "group (BijGroup S)"
    76 theorem group_BijGroup: "group (BijGroup S)"
    77 apply (simp add: BijGroup_def) 
    77 apply (simp add: BijGroup_def)
    78 apply (rule groupI)
    78 apply (rule groupI)
    79     apply (simp add: compose_Bij)
    79     apply (simp add: compose_Bij)
    80    apply (simp add: id_Bij)
    80    apply (simp add: id_Bij)
    81   apply (simp add: compose_Bij)
    81   apply (simp add: compose_Bij)
    82   apply (blast intro: compose_assoc [symmetric] Bij_imp_funcset)
    82   apply (blast intro: compose_assoc [symmetric] Bij_imp_funcset)
    83  apply (simp add: id_Bij Bij_imp_funcset Bij_imp_extensional, simp)
    83  apply (simp add: id_Bij Bij_imp_funcset Bij_imp_extensional, simp)
    84 apply (blast intro: Bij_compose_restrict_eq restrict_Inv_Bij) 
    84 apply (blast intro: Bij_compose_restrict_eq restrict_Inv_Bij)
    85 done
    85 done
    86 
    86 
    87 
    87 
    88 subsection{*Automorphisms Form a Group*}
    88 subsection{*Automorphisms Form a Group*}
    89 
    89 
    90 lemma Bij_Inv_mem: "[|  f \<in> Bij S;  x : S |] ==> Inv S f x : S"
    90 lemma Bij_Inv_mem: "[|  f \<in> Bij S;  x : S |] ==> Inv S f x : S"
    91 by (simp add: Bij_def Inv_mem) 
    91 by (simp add: Bij_def Inv_mem)
    92 
    92 
    93 lemma Bij_Inv_lemma:
    93 lemma Bij_Inv_lemma:
    94  assumes eq: "!!x y. [|x \<in> S; y \<in> S|] ==> h(g x y) = g (h x) (h y)"
    94  assumes eq: "!!x y. [|x \<in> S; y \<in> S|] ==> h(g x y) = g (h x) (h y)"
    95  shows "[| h \<in> Bij S;  g \<in> S \<rightarrow> S \<rightarrow> S;  x \<in> S;  y \<in> S |]        
    95  shows "[| h \<in> Bij S;  g \<in> S \<rightarrow> S \<rightarrow> S;  x \<in> S;  y \<in> S |]
    96         ==> Inv S h (g x y) = g (Inv S h x) (Inv S h y)"
    96         ==> Inv S h (g x y) = g (Inv S h x) (Inv S h y)"
    97 apply (simp add: Bij_def) 
    97 apply (simp add: Bij_def)
    98 apply (subgoal_tac "EX x':S. EX y':S. x = h x' & y = h y'", clarify)
    98 apply (subgoal_tac "EX x':S. EX y':S. x = h x' & y = h y'", clarify)
    99  apply (simp add: eq [symmetric] Inv_f_f funcset_mem [THEN funcset_mem], blast)
    99  apply (simp add: eq [symmetric] Inv_f_f funcset_mem [THEN funcset_mem], blast)
   100 done
   100 done
   101 
   101 
   102 constdefs
   102 constdefs
   103  auto :: "('a,'b) monoid_scheme => ('a => 'a)set"
   103   auto :: "('a, 'b) monoid_scheme => ('a => 'a) set"
   104   "auto G == hom G G \<inter> Bij (carrier G)"
   104   "auto G == hom G G \<inter> Bij (carrier G)"
   105 
   105 
   106   AutoGroup :: "[('a,'c) monoid_scheme] => ('a=>'a) monoid"
   106   AutoGroup :: "('a, 'c) monoid_scheme => ('a => 'a) monoid"
   107   "AutoGroup G == BijGroup (carrier G) (|carrier := auto G |)"
   107   "AutoGroup G == BijGroup (carrier G) (|carrier := auto G |)"
   108 
   108 
   109 lemma id_in_auto: "group G ==> (%x: carrier G. x) \<in> auto G"
   109 lemma id_in_auto: "group G ==> (%x: carrier G. x) \<in> auto G"
   110   by (simp add: auto_def hom_def restrictI group.axioms id_Bij) 
   110   by (simp add: auto_def hom_def restrictI group.axioms id_Bij)
   111 
   111 
   112 lemma mult_funcset: "group G ==> mult G \<in> carrier G -> carrier G -> carrier G"
   112 lemma mult_funcset: "group G ==> mult G \<in> carrier G -> carrier G -> carrier G"
   113   by (simp add:  Pi_I group.axioms)
   113   by (simp add:  Pi_I group.axioms)
   114 
   114 
   115 lemma restrict_Inv_hom:
   115 lemma restrict_Inv_hom:
   120 
   120 
   121 lemma inv_BijGroup:
   121 lemma inv_BijGroup:
   122      "f \<in> Bij S ==> m_inv (BijGroup S) f = (%x: S. (Inv S f) x)"
   122      "f \<in> Bij S ==> m_inv (BijGroup S) f = (%x: S. (Inv S f) x)"
   123 apply (rule group.inv_equality)
   123 apply (rule group.inv_equality)
   124 apply (rule group_BijGroup)
   124 apply (rule group_BijGroup)
   125 apply (simp_all add: BijGroup_def restrict_Inv_Bij Bij_compose_restrict_eq)  
   125 apply (simp_all add: BijGroup_def restrict_Inv_Bij Bij_compose_restrict_eq)
   126 done
   126 done
   127 
   127 
   128 lemma subgroup_auto:
   128 lemma subgroup_auto:
   129       "group G ==> subgroup (auto G) (BijGroup (carrier G))"
   129       "group G ==> subgroup (auto G) (BijGroup (carrier G))"
   130 apply (rule group.subgroupI) 
   130 apply (rule group.subgroupI)
   131     apply (rule group_BijGroup) 
   131     apply (rule group_BijGroup)
   132    apply (force simp add: auto_def BijGroup_def) 
   132    apply (force simp add: auto_def BijGroup_def)
   133   apply (blast intro: dest: id_in_auto) 
   133   apply (blast intro: dest: id_in_auto)
   134  apply (simp del: restrict_apply
   134  apply (simp del: restrict_apply
   135 	     add: inv_BijGroup auto_def restrict_Inv_Bij restrict_Inv_hom) 
   135              add: inv_BijGroup auto_def restrict_Inv_Bij restrict_Inv_hom)
   136 apply (simp add: BijGroup_def auto_def Bij_imp_funcset compose_hom compose_Bij)
   136 apply (simp add: BijGroup_def auto_def Bij_imp_funcset compose_hom compose_Bij)
   137 done
   137 done
   138 
   138 
   139 theorem AutoGroup: "group G ==> group (AutoGroup G)"
   139 theorem AutoGroup: "group G ==> group (AutoGroup G)"
   140 apply (simp add: AutoGroup_def) 
   140 apply (simp add: AutoGroup_def)
   141 apply (rule Group.subgroup.groupI)
   141 apply (rule Group.subgroup.groupI)
   142 apply (erule subgroup_auto)  
   142 apply (erule subgroup_auto)
   143 apply (insert Bij.group_BijGroup [of "carrier G"]) 
   143 apply (insert Bij.group_BijGroup [of "carrier G"])
   144 apply (simp_all add: group_def) 
   144 apply (simp_all add: group_def)
   145 done
   145 done
   146 
   146 
   147 end
   147 end
   148