src/HOL/Library/RBT_Mapping.thy
changeset 56019 682bba24e474
parent 51438 a614e456870b
child 58881 b9556a055632
equal deleted inserted replaced
56018:c3fc8692dbc1 56019:682bba24e474
     9 imports RBT Mapping
     9 imports RBT Mapping
    10 begin
    10 begin
    11 
    11 
    12 subsection {* Implementation of mappings *}
    12 subsection {* Implementation of mappings *}
    13 
    13 
    14 lift_definition Mapping :: "('a\<Colon>linorder, 'b) rbt \<Rightarrow> ('a, 'b) mapping" is lookup .
    14 context includes rbt.lifting begin
       
    15 lift_definition Mapping :: "('a\<Colon>linorder, 'b) rbt \<Rightarrow> ('a, 'b) mapping" is RBT.lookup .
       
    16 end
    15 
    17 
    16 code_datatype Mapping
    18 code_datatype Mapping
    17 
    19 
       
    20 context includes rbt.lifting begin
       
    21 
    18 lemma lookup_Mapping [simp, code]:
    22 lemma lookup_Mapping [simp, code]:
    19   "Mapping.lookup (Mapping t) = lookup t"
    23   "Mapping.lookup (Mapping t) = RBT.lookup t"
    20    by (transfer fixing: t) rule
    24    by (transfer fixing: t) rule
    21 
    25 
    22 lemma empty_Mapping [code]: "Mapping.empty = Mapping empty"
    26 lemma empty_Mapping [code]: "Mapping.empty = Mapping RBT.empty"
    23 proof -
    27 proof -
    24   note RBT.empty.transfer[transfer_rule del]
    28   note RBT.empty.transfer[transfer_rule del]
    25   show ?thesis by transfer simp
    29   show ?thesis by transfer simp
    26 qed
    30 qed
    27 
    31 
    28 lemma is_empty_Mapping [code]:
    32 lemma is_empty_Mapping [code]:
    29   "Mapping.is_empty (Mapping t) \<longleftrightarrow> is_empty t"
    33   "Mapping.is_empty (Mapping t) \<longleftrightarrow> RBT.is_empty t"
    30   unfolding is_empty_def by (transfer fixing: t) simp
    34   unfolding is_empty_def by (transfer fixing: t) simp
    31 
    35 
    32 lemma insert_Mapping [code]:
    36 lemma insert_Mapping [code]:
    33   "Mapping.update k v (Mapping t) = Mapping (insert k v t)"
    37   "Mapping.update k v (Mapping t) = Mapping (RBT.insert k v t)"
    34   by (transfer fixing: t) simp
    38   by (transfer fixing: t) simp
    35 
    39 
    36 lemma delete_Mapping [code]:
    40 lemma delete_Mapping [code]:
    37   "Mapping.delete k (Mapping t) = Mapping (delete k t)"
    41   "Mapping.delete k (Mapping t) = Mapping (RBT.delete k t)"
    38   by (transfer fixing: t) simp
    42   by (transfer fixing: t) simp
    39 
    43 
    40 lemma map_entry_Mapping [code]:
    44 lemma map_entry_Mapping [code]:
    41   "Mapping.map_entry k f (Mapping t) = Mapping (map_entry k f t)"
    45   "Mapping.map_entry k f (Mapping t) = Mapping (RBT.map_entry k f t)"
    42   apply (transfer fixing: t) by (case_tac "lookup t k") auto
    46   apply (transfer fixing: t) by (case_tac "RBT.lookup t k") auto
    43 
    47 
    44 lemma keys_Mapping [code]:
    48 lemma keys_Mapping [code]:
    45   "Mapping.keys (Mapping t) = set (keys t)"
    49   "Mapping.keys (Mapping t) = set (RBT.keys t)"
    46 by (transfer fixing: t) (simp add: lookup_keys)
    50 by (transfer fixing: t) (simp add: lookup_keys)
    47 
    51 
    48 lemma ordered_keys_Mapping [code]:
    52 lemma ordered_keys_Mapping [code]:
    49   "Mapping.ordered_keys (Mapping t) = keys t"
    53   "Mapping.ordered_keys (Mapping t) = RBT.keys t"
    50 unfolding ordered_keys_def 
    54 unfolding ordered_keys_def 
    51 by (transfer fixing: t) (auto simp add: lookup_keys intro: sorted_distinct_set_unique)
    55 by (transfer fixing: t) (auto simp add: lookup_keys intro: sorted_distinct_set_unique)
    52 
    56 
    53 lemma Mapping_size_card_keys: (*FIXME*)
    57 lemma Mapping_size_card_keys: (*FIXME*)
    54   "Mapping.size m = card (Mapping.keys m)"
    58   "Mapping.size m = card (Mapping.keys m)"
    55 unfolding size_def by transfer simp
    59 unfolding size_def by transfer simp
    56 
    60 
    57 lemma size_Mapping [code]:
    61 lemma size_Mapping [code]:
    58   "Mapping.size (Mapping t) = length (keys t)"
    62   "Mapping.size (Mapping t) = length (RBT.keys t)"
    59 unfolding size_def
    63 unfolding size_def
    60 by (transfer fixing: t) (simp add: lookup_keys distinct_card)
    64 by (transfer fixing: t) (simp add: lookup_keys distinct_card)
    61 
    65 
    62 context
    66 context
    63   notes RBT.bulkload.transfer[transfer_rule del]
    67   notes RBT.bulkload.transfer[transfer_rule del]
    64 begin
    68 begin
    65   lemma tabulate_Mapping [code]:
    69   lemma tabulate_Mapping [code]:
    66     "Mapping.tabulate ks f = Mapping (bulkload (List.map (\<lambda>k. (k, f k)) ks))"
    70     "Mapping.tabulate ks f = Mapping (RBT.bulkload (List.map (\<lambda>k. (k, f k)) ks))"
    67   by transfer (simp add: map_of_map_restrict)
    71   by transfer (simp add: map_of_map_restrict)
    68   
    72   
    69   lemma bulkload_Mapping [code]:
    73   lemma bulkload_Mapping [code]:
    70     "Mapping.bulkload vs = Mapping (bulkload (List.map (\<lambda>n. (n, vs ! n)) [0..<length vs]))"
    74     "Mapping.bulkload vs = Mapping (RBT.bulkload (List.map (\<lambda>n. (n, vs ! n)) [0..<length vs]))"
    71   by transfer (simp add: map_of_map_restrict fun_eq_iff)
    75   by transfer (simp add: map_of_map_restrict fun_eq_iff)
    72 end
    76 end
    73 
    77 
    74 lemma equal_Mapping [code]:
    78 lemma equal_Mapping [code]:
    75   "HOL.equal (Mapping t1) (Mapping t2) \<longleftrightarrow> entries t1 = entries t2"
    79   "HOL.equal (Mapping t1) (Mapping t2) \<longleftrightarrow> RBT.entries t1 = RBT.entries t2"
    76   by (transfer fixing: t1 t2) (simp add: entries_lookup)
    80   by (transfer fixing: t1 t2) (simp add: entries_lookup)
    77 
    81 
    78 lemma [code nbe]:
    82 lemma [code nbe]:
    79   "HOL.equal (x :: (_, _) mapping) x \<longleftrightarrow> True"
    83   "HOL.equal (x :: (_, _) mapping) x \<longleftrightarrow> True"
    80   by (fact equal_refl)
    84   by (fact equal_refl)
    81 
    85 
    82 
    86 end
    83 hide_const (open) impl_of lookup empty insert delete
    87 
    84   entries keys bulkload map_entry map fold
       
    85 (*>*)
    88 (*>*)
    86 
    89 
    87 text {* 
    90 text {* 
    88   This theory defines abstract red-black trees as an efficient
    91   This theory defines abstract red-black trees as an efficient
    89   representation of finite maps, backed by the implementation
    92   representation of finite maps, backed by the implementation