src/HOL/Library/GCD.thy
changeset 22367 6860f09242bf
parent 22027 e4a08629c4bd
child 23244 1630951f0512
equal deleted inserted replaced
22366:f4840bfffe5d 22367:6860f09242bf
   178    apply (simp_all add: gcd_non_0)
   178    apply (simp_all add: gcd_non_0)
   179   done
   179   done
   180 
   180 
   181 lemma gcd_add2 [simp]: "gcd (m, m + n) = gcd (m, n)"
   181 lemma gcd_add2 [simp]: "gcd (m, m + n) = gcd (m, n)"
   182 proof -
   182 proof -
   183   have "gcd (m, m + n) = gcd (m + n, m)" by (rule gcd_commute) 
   183   have "gcd (m, m + n) = gcd (m + n, m)" by (rule gcd_commute)
   184   also have "... = gcd (n + m, m)" by (simp add: add_commute)
   184   also have "... = gcd (n + m, m)" by (simp add: add_commute)
   185   also have "... = gcd (n, m)" by simp
   185   also have "... = gcd (n, m)" by simp
   186   also have  "... = gcd (m, n)" by (rule gcd_commute) 
   186   also have  "... = gcd (m, n)" by (rule gcd_commute)
   187   finally show ?thesis .
   187   finally show ?thesis .
   188 qed
   188 qed
   189 
   189 
   190 lemma gcd_add2' [simp]: "gcd (m, n + m) = gcd (m, n)"
   190 lemma gcd_add2' [simp]: "gcd (m, n + m) = gcd (m, n)"
   191   apply (subst add_commute)
   191   apply (subst add_commute)
   193   done
   193   done
   194 
   194 
   195 lemma gcd_add_mult: "gcd (m, k * m + n) = gcd (m, n)"
   195 lemma gcd_add_mult: "gcd (m, k * m + n) = gcd (m, n)"
   196   by (induct k) (simp_all add: add_assoc)
   196   by (induct k) (simp_all add: add_assoc)
   197 
   197 
   198   (* Division by gcd yields rrelatively primes *)
   198 
   199 
   199 text {*
       
   200   \medskip Division by gcd yields rrelatively primes.
       
   201 *}
   200 
   202 
   201 lemma div_gcd_relprime:
   203 lemma div_gcd_relprime:
   202   assumes nz:"a\<noteq>0 \<or> b\<noteq>0"
   204   assumes nz: "a \<noteq> 0 \<or> b \<noteq> 0"
   203   shows "gcd (a div gcd(a,b), b div gcd(a,b)) = 1"
   205   shows "gcd (a div gcd(a,b), b div gcd(a,b)) = 1"
   204 proof-
   206 proof -
   205   let ?g = "gcd (a,b)"
   207   let ?g = "gcd (a, b)"
   206   let ?a' = "a div ?g"
   208   let ?a' = "a div ?g"
   207   let ?b' = "b div ?g"
   209   let ?b' = "b div ?g"
   208   let ?g' = "gcd (?a', ?b')"
   210   let ?g' = "gcd (?a', ?b')"
   209   have dvdg: "?g dvd a" "?g dvd b" by simp_all
   211   have dvdg: "?g dvd a" "?g dvd b" by simp_all
   210   have dvdg': "?g' dvd ?a'" "?g' dvd ?b'" by simp_all
   212   have dvdg': "?g' dvd ?a'" "?g' dvd ?b'" by simp_all
   211   from dvdg dvdg' obtain ka kb ka' kb' where 
   213   from dvdg dvdg' obtain ka kb ka' kb' where
   212    kab: "a = ?g*ka" "b = ?g*kb" "?a' = ?g'*ka'" "?b' = ?g' * kb'" 
   214       kab: "a = ?g * ka" "b = ?g * kb" "?a' = ?g' * ka'" "?b' = ?g' * kb'"
   213     unfolding dvd_def by blast
   215     unfolding dvd_def by blast
   214   hence	"?g* ?a' = (?g * ?g') * ka'" "?g* ?b' = (?g * ?g') * kb'" by simp_all
   216   then have "?g * ?a' = (?g * ?g') * ka'" "?g * ?b' = (?g * ?g') * kb'" by simp_all
   215   hence dvdgg':"?g * ?g' dvd a" "?g* ?g' dvd b"
   217   then have dvdgg':"?g * ?g' dvd a" "?g* ?g' dvd b"
   216     by (auto simp add: dvd_mult_div_cancel[OF dvdg(1)] 
   218     by (auto simp add: dvd_mult_div_cancel [OF dvdg(1)]
   217       dvd_mult_div_cancel[OF dvdg(2)] dvd_def)
   219       dvd_mult_div_cancel [OF dvdg(2)] dvd_def)
   218   have "?g \<noteq> 0" using nz by (simp add: gcd_zero)
   220   have "?g \<noteq> 0" using nz by (simp add: gcd_zero)
   219   hence gp: "?g > 0" by simp 
   221   then have gp: "?g > 0" by simp
   220   from gcd_greatest[OF dvdgg'] have "?g * ?g' dvd ?g" .
   222   from gcd_greatest [OF dvdgg'] have "?g * ?g' dvd ?g" .
   221   with dvd_mult_cancel1[OF gp] show "?g' = 1" by simp
   223   with dvd_mult_cancel1 [OF gp] show "?g' = 1" by simp
   222 qed
   224 qed
   223 
   225 
   224   (* gcd on integers *)
   226 
   225 constdefs igcd:: "int \<Rightarrow> int \<Rightarrow> int"
   227 text {*
   226   "igcd i j \<equiv> int (gcd (nat (abs i),nat (abs j)))"
   228   \medskip Gcd on integers.
   227 lemma igcd_dvd1[simp]:"igcd i j dvd i"
   229 *}
       
   230 
       
   231 definition
       
   232   igcd :: "int \<Rightarrow> int \<Rightarrow> int" where
       
   233   "igcd i j = int (gcd (nat (abs i), nat (abs j)))"
       
   234 
       
   235 lemma igcd_dvd1 [simp]: "igcd i j dvd i"
   228   by (simp add: igcd_def int_dvd_iff)
   236   by (simp add: igcd_def int_dvd_iff)
   229 
   237 
   230 lemma igcd_dvd2[simp]:"igcd i j dvd j"
   238 lemma igcd_dvd2 [simp]: "igcd i j dvd j"
   231 by (simp add: igcd_def int_dvd_iff)
   239   by (simp add: igcd_def int_dvd_iff)
   232 
   240 
   233 lemma igcd_pos: "igcd i j \<ge> 0"
   241 lemma igcd_pos: "igcd i j \<ge> 0"
   234 by (simp add: igcd_def)
   242   by (simp add: igcd_def)
   235 lemma igcd0[simp]: "(igcd i j = 0) = (i = 0 \<and> j = 0)"
   243 
   236 by (simp add: igcd_def gcd_zero) arith
   244 lemma igcd0 [simp]: "(igcd i j = 0) = (i = 0 \<and> j = 0)"
       
   245   by (simp add: igcd_def gcd_zero) arith
   237 
   246 
   238 lemma igcd_commute: "igcd i j = igcd j i"
   247 lemma igcd_commute: "igcd i j = igcd j i"
   239   unfolding igcd_def by (simp add: gcd_commute)
   248   unfolding igcd_def by (simp add: gcd_commute)
   240 lemma igcd_neg1[simp]: "igcd (- i) j = igcd i j"
   249 
       
   250 lemma igcd_neg1 [simp]: "igcd (- i) j = igcd i j"
   241   unfolding igcd_def by simp
   251   unfolding igcd_def by simp
   242 lemma igcd_neg2[simp]: "igcd i (- j) = igcd i j"
   252 
       
   253 lemma igcd_neg2 [simp]: "igcd i (- j) = igcd i j"
   243   unfolding igcd_def by simp
   254   unfolding igcd_def by simp
       
   255 
   244 lemma zrelprime_dvd_mult: "igcd i j = 1 \<Longrightarrow> i dvd k * j \<Longrightarrow> i dvd k"
   256 lemma zrelprime_dvd_mult: "igcd i j = 1 \<Longrightarrow> i dvd k * j \<Longrightarrow> i dvd k"
   245   unfolding igcd_def
   257   unfolding igcd_def
   246 proof-
   258 proof -
   247   assume H: "int (gcd (nat \<bar>i\<bar>, nat \<bar>j\<bar>)) = 1" "i dvd k * j"
   259   assume "int (gcd (nat \<bar>i\<bar>, nat \<bar>j\<bar>)) = 1" "i dvd k * j"
   248   hence g: "gcd (nat \<bar>i\<bar>, nat \<bar>j\<bar>) = 1" by simp
   260   then have g: "gcd (nat \<bar>i\<bar>, nat \<bar>j\<bar>) = 1" by simp
   249   from H(2) obtain h where h:"k*j = i*h" unfolding dvd_def by blast  
   261   from `i dvd k * j` obtain h where h: "k*j = i*h" unfolding dvd_def by blast
   250   have th: "nat \<bar>i\<bar> dvd nat \<bar>k\<bar> * nat \<bar>j\<bar>"
   262   have th: "nat \<bar>i\<bar> dvd nat \<bar>k\<bar> * nat \<bar>j\<bar>"
   251     unfolding dvd_def 
   263     unfolding dvd_def
   252     by (rule_tac x= "nat \<bar>h\<bar>" in exI,simp add: h nat_abs_mult_distrib[symmetric])
   264     by (rule_tac x= "nat \<bar>h\<bar>" in exI, simp add: h nat_abs_mult_distrib [symmetric])
   253   from relprime_dvd_mult[OF g th] obtain h' where h': "nat \<bar>k\<bar> = nat \<bar>i\<bar> * h'" 
   265   from relprime_dvd_mult [OF g th] obtain h' where h': "nat \<bar>k\<bar> = nat \<bar>i\<bar> * h'"
   254     unfolding dvd_def by blast
   266     unfolding dvd_def by blast
   255   from h' have "int (nat \<bar>k\<bar>) = int (nat \<bar>i\<bar> * h')" by simp
   267   from h' have "int (nat \<bar>k\<bar>) = int (nat \<bar>i\<bar> * h')" by simp
   256   hence "\<bar>k\<bar> = \<bar>i\<bar> * int h'" by (simp add: int_mult)
   268   then have "\<bar>k\<bar> = \<bar>i\<bar> * int h'" by (simp add: int_mult)
   257   then show ?thesis
   269   then show ?thesis
   258     apply (subst zdvd_abs1[symmetric])
   270     apply (subst zdvd_abs1 [symmetric])
   259     apply (subst zdvd_abs2[symmetric])
   271     apply (subst zdvd_abs2 [symmetric])
   260     apply (unfold dvd_def)
   272     apply (unfold dvd_def)
   261     apply (rule_tac x="int h'" in exI, simp)
   273     apply (rule_tac x = "int h'" in exI, simp)
   262     done
   274     done
   263 qed
   275 qed
   264 
   276 
   265 lemma int_nat_abs: "int (nat (abs x)) = abs x"  by arith
   277 lemma int_nat_abs: "int (nat (abs x)) = abs x"  by arith
   266 lemma igcd_greatest: assumes km:"k dvd m" and kn:"k dvd n"  shows "k dvd igcd m n"
   278 
   267 proof-
   279 lemma igcd_greatest:
       
   280   assumes "k dvd m" and "k dvd n"
       
   281   shows "k dvd igcd m n"
       
   282 proof -
   268   let ?k' = "nat \<bar>k\<bar>"
   283   let ?k' = "nat \<bar>k\<bar>"
   269   let ?m' = "nat \<bar>m\<bar>"
   284   let ?m' = "nat \<bar>m\<bar>"
   270   let ?n' = "nat \<bar>n\<bar>"
   285   let ?n' = "nat \<bar>n\<bar>"
   271   from km kn have dvd': "?k' dvd ?m'" "?k' dvd ?n'"
   286   from `k dvd m` and `k dvd n` have dvd': "?k' dvd ?m'" "?k' dvd ?n'"
   272     unfolding zdvd_int by (simp_all only: int_nat_abs zdvd_abs1 zdvd_abs2)
   287     unfolding zdvd_int by (simp_all only: int_nat_abs zdvd_abs1 zdvd_abs2)
   273   from gcd_greatest[OF dvd'] have "int (nat \<bar>k\<bar>) dvd igcd m n"
   288   from gcd_greatest [OF dvd'] have "int (nat \<bar>k\<bar>) dvd igcd m n"
   274     unfolding igcd_def by (simp only: zdvd_int)
   289     unfolding igcd_def by (simp only: zdvd_int)
   275   hence "\<bar>k\<bar> dvd igcd m n" by (simp only: int_nat_abs)
   290   then have "\<bar>k\<bar> dvd igcd m n" by (simp only: int_nat_abs)
   276   thus "k dvd igcd m n" by (simp add: zdvd_abs1)
   291   then show "k dvd igcd m n" by (simp add: zdvd_abs1)
   277 qed
   292 qed
   278 
   293 
   279 lemma div_igcd_relprime:
   294 lemma div_igcd_relprime:
   280   assumes nz:"a\<noteq>0 \<or> b\<noteq>0"
   295   assumes nz: "a \<noteq> 0 \<or> b \<noteq> 0"
   281   shows "igcd (a div (igcd a b)) (b div (igcd a b)) = 1"
   296   shows "igcd (a div (igcd a b)) (b div (igcd a b)) = 1"
   282 proof-
   297 proof -
   283   from nz have nz': "nat \<bar>a\<bar> \<noteq> 0 \<or> nat \<bar>b\<bar> \<noteq> 0" by simp
   298   from nz have nz': "nat \<bar>a\<bar> \<noteq> 0 \<or> nat \<bar>b\<bar> \<noteq> 0" by simp
   284   have th1: "(1::int) = int 1" by simp
       
   285   let ?g = "igcd a b"
   299   let ?g = "igcd a b"
   286   let ?a' = "a div ?g"
   300   let ?a' = "a div ?g"
   287   let ?b' = "b div ?g"
   301   let ?b' = "b div ?g"
   288   let ?g' = "igcd ?a' ?b'"
   302   let ?g' = "igcd ?a' ?b'"
   289   have dvdg: "?g dvd a" "?g dvd b" by (simp_all add: igcd_dvd1 igcd_dvd2)
   303   have dvdg: "?g dvd a" "?g dvd b" by (simp_all add: igcd_dvd1 igcd_dvd2)
   290   have dvdg': "?g' dvd ?a'" "?g' dvd ?b'" by (simp_all add: igcd_dvd1 igcd_dvd2)
   304   have dvdg': "?g' dvd ?a'" "?g' dvd ?b'" by (simp_all add: igcd_dvd1 igcd_dvd2)
   291   from dvdg dvdg' obtain ka kb ka' kb' where 
   305   from dvdg dvdg' obtain ka kb ka' kb' where
   292    kab: "a = ?g*ka" "b = ?g*kb" "?a' = ?g'*ka'" "?b' = ?g' * kb'" 
   306    kab: "a = ?g*ka" "b = ?g*kb" "?a' = ?g'*ka'" "?b' = ?g' * kb'"
   293     unfolding dvd_def by blast
   307     unfolding dvd_def by blast
   294   hence	"?g* ?a' = (?g * ?g') * ka'" "?g* ?b' = (?g * ?g') * kb'" by simp_all
   308   then have "?g* ?a' = (?g * ?g') * ka'" "?g* ?b' = (?g * ?g') * kb'" by simp_all
   295   hence dvdgg':"?g * ?g' dvd a" "?g* ?g' dvd b"
   309   then have dvdgg':"?g * ?g' dvd a" "?g* ?g' dvd b"
   296     by (auto simp add: zdvd_mult_div_cancel[OF dvdg(1)] 
   310     by (auto simp add: zdvd_mult_div_cancel [OF dvdg(1)]
   297       zdvd_mult_div_cancel[OF dvdg(2)] dvd_def)
   311       zdvd_mult_div_cancel [OF dvdg(2)] dvd_def)
   298   have "?g \<noteq> 0" using nz by simp
   312   have "?g \<noteq> 0" using nz by simp
   299   hence gp: "?g \<noteq> 0" using igcd_pos[where i="a" and j="b"] by arith
   313   then have gp: "?g \<noteq> 0" using igcd_pos[where i="a" and j="b"] by arith
   300   from igcd_greatest[OF dvdgg'] have "?g * ?g' dvd ?g" .
   314   from igcd_greatest [OF dvdgg'] have "?g * ?g' dvd ?g" .
   301   with zdvd_mult_cancel1[OF gp] have "\<bar>?g'\<bar> = 1" by simp 
   315   with zdvd_mult_cancel1 [OF gp] have "\<bar>?g'\<bar> = 1" by simp
   302   with igcd_pos show "?g' = 1" by simp
   316   with igcd_pos show "?g' = 1" by simp
   303 qed
   317 qed
   304 
   318 
   305 end
   319 end