src/HOL/Algebra/Coset.thy
changeset 32960 69916a850301
parent 31727 2621a957d417
child 35416 d8d7d1b785af
equal deleted inserted replaced
32959:23a8c5ac35f8 32960:69916a850301
   607   next
   607   next
   608     show "sym (rcong H)"
   608     show "sym (rcong H)"
   609     proof (simp add: r_congruent_def sym_def, clarify)
   609     proof (simp add: r_congruent_def sym_def, clarify)
   610       fix x y
   610       fix x y
   611       assume [simp]: "x \<in> carrier G" "y \<in> carrier G" 
   611       assume [simp]: "x \<in> carrier G" "y \<in> carrier G" 
   612 	 and "inv x \<otimes> y \<in> H"
   612          and "inv x \<otimes> y \<in> H"
   613       hence "inv (inv x \<otimes> y) \<in> H" by (simp add: m_inv_closed) 
   613       hence "inv (inv x \<otimes> y) \<in> H" by (simp add: m_inv_closed) 
   614       thus "inv y \<otimes> x \<in> H" by (simp add: inv_mult_group)
   614       thus "inv y \<otimes> x \<in> H" by (simp add: inv_mult_group)
   615     qed
   615     qed
   616   next
   616   next
   617     show "trans (rcong H)"
   617     show "trans (rcong H)"
   618     proof (simp add: r_congruent_def trans_def, clarify)
   618     proof (simp add: r_congruent_def trans_def, clarify)
   619       fix x y z
   619       fix x y z
   620       assume [simp]: "x \<in> carrier G" "y \<in> carrier G" "z \<in> carrier G"
   620       assume [simp]: "x \<in> carrier G" "y \<in> carrier G" "z \<in> carrier G"
   621 	 and "inv x \<otimes> y \<in> H" and "inv y \<otimes> z \<in> H"
   621          and "inv x \<otimes> y \<in> H" and "inv y \<otimes> z \<in> H"
   622       hence "(inv x \<otimes> y) \<otimes> (inv y \<otimes> z) \<in> H" by simp
   622       hence "(inv x \<otimes> y) \<otimes> (inv y \<otimes> z) \<in> H" by simp
   623       hence "inv x \<otimes> (y \<otimes> inv y) \<otimes> z \<in> H"
   623       hence "inv x \<otimes> (y \<otimes> inv y) \<otimes> z \<in> H"
   624 	by (simp add: m_assoc del: r_inv Units_r_inv) 
   624         by (simp add: m_assoc del: r_inv Units_r_inv) 
   625       thus "inv x \<otimes> z \<in> H" by simp
   625       thus "inv x \<otimes> z \<in> H" by simp
   626     qed
   626     qed
   627   qed
   627   qed
   628 qed
   628 qed
   629 
   629