src/HOL/Integ/IntDef.thy
changeset 14378 69c4d5997669
parent 14348 744c868ee0b7
child 14387 e96d5c42c4b0
equal deleted inserted replaced
14377:f454b3004f8f 14378:69c4d5997669
    25 
    25 
    26 constdefs
    26 constdefs
    27 
    27 
    28   int :: "nat => int"
    28   int :: "nat => int"
    29   "int m == Abs_Integ(intrel `` {(m,0)})"
    29   "int m == Abs_Integ(intrel `` {(m,0)})"
    30 
       
    31   neg   :: "int => bool"
       
    32   "neg(Z) == \<exists>x y. x<y & (x,y::nat):Rep_Integ(Z)"
       
    33 
       
    34   (*For simplifying equalities*)
       
    35   iszero :: "int => bool"
       
    36   "iszero z == z = (0::int)"
       
    37   
    30   
    38 defs (overloaded)
    31 defs (overloaded)
    39   
    32   
    40   zminus_def:    "- Z == Abs_Integ(\<Union>(x,y) \<in> Rep_Integ(Z). intrel``{(y,x)})"
    33   zminus_def:    "- Z == Abs_Integ(\<Union>(x,y) \<in> Rep_Integ(Z). intrel``{(y,x)})"
    41 
    34 
    46    "z + w == 
    39    "z + w == 
    47        Abs_Integ(\<Union>(x1,y1) \<in> Rep_Integ(z). \<Union>(x2,y2) \<in> Rep_Integ(w).   
    40        Abs_Integ(\<Union>(x1,y1) \<in> Rep_Integ(z). \<Union>(x2,y2) \<in> Rep_Integ(w).   
    48 		 intrel``{(x1+x2, y1+y2)})"
    41 		 intrel``{(x1+x2, y1+y2)})"
    49 
    42 
    50   zdiff_def:  "z - (w::int) == z + (-w)"
    43   zdiff_def:  "z - (w::int) == z + (-w)"
    51 
       
    52   zless_def:  "z<w == neg(z - w)"
       
    53 
       
    54   zle_def:    "z <= (w::int) == ~(w < z)"
       
    55 
       
    56   zmult_def:
    44   zmult_def:
    57    "z * w == 
    45    "z * w == 
    58        Abs_Integ(\<Union>(x1,y1) \<in> Rep_Integ(z). \<Union>(x2,y2) \<in> Rep_Integ(w).   
    46        Abs_Integ(\<Union>(x1,y1) \<in> Rep_Integ(z). \<Union>(x2,y2) \<in> Rep_Integ(w).   
    59 		 intrel``{(x1*x2 + y1*y2, x1*y2 + y1*x2)})"
    47 		 intrel``{(x1*x2 + y1*y2, x1*y2 + y1*x2)})"
       
    48 
       
    49   zless_def: "(z < (w::int)) == (z \<le> w & z \<noteq> w)"
       
    50 
       
    51   zle_def:
       
    52   "z \<le> (w::int) == \<exists>x1 y1 x2 y2. x1 + y2 \<le> x2 + y1 &
       
    53                             (x1,y1) \<in> Rep_Integ z & (x2,y2) \<in> Rep_Integ w"
    60 
    54 
    61 lemma intrel_iff [simp]: "(((x1,y1),(x2,y2)) \<in>  intrel) = (x1+y2 = x2+y1)"
    55 lemma intrel_iff [simp]: "(((x1,y1),(x2,y2)) \<in>  intrel) = (x1+y2 = x2+y1)"
    62 by (unfold intrel_def, blast)
    56 by (unfold intrel_def, blast)
    63 
    57 
    64 lemma equiv_intrel: "equiv UNIV intrel"
    58 lemma equiv_intrel: "equiv UNIV intrel"
   119 apply (rule_tac p = x in PairE)
   113 apply (rule_tac p = x in PairE)
   120 apply (simp add: Rep_Integ_inverse)
   114 apply (simp add: Rep_Integ_inverse)
   121 done
   115 done
   122 
   116 
   123 lemma zminus_zminus [simp]: "- (- z) = (z::int)"
   117 lemma zminus_zminus [simp]: "- (- z) = (z::int)"
   124 apply (rule_tac z = z in eq_Abs_Integ)
   118 apply (rule eq_Abs_Integ [of z])
   125 apply (simp (no_asm_simp) add: zminus)
   119 apply (simp add: zminus)
   126 done
   120 done
   127 
   121 
   128 lemma inj_zminus: "inj(%z::int. -z)"
   122 lemma inj_zminus: "inj(%z::int. -z)"
   129 apply (rule inj_onI)
   123 apply (rule inj_onI)
   130 apply (drule_tac f = uminus in arg_cong, simp)
   124 apply (drule_tac f = uminus in arg_cong, simp)
   131 done
   125 done
   132 
   126 
   133 lemma zminus_0 [simp]: "- 0 = (0::int)"
   127 lemma zminus_0 [simp]: "- 0 = (0::int)"
   134 by (simp add: int_def Zero_int_def zminus)
   128 by (simp add: int_def Zero_int_def zminus)
   135 
       
   136 
       
   137 subsection{*neg: the test for negative integers*}
       
   138 
       
   139 
       
   140 lemma not_neg_int [simp]: "~ neg(int n)"
       
   141 by (simp add: neg_def int_def)
       
   142 
       
   143 lemma neg_zminus_int [simp]: "neg(- (int (Suc n)))"
       
   144 by (simp add: neg_def int_def zminus)
       
   145 
   129 
   146 
   130 
   147 subsection{*zadd: addition on Integ*}
   131 subsection{*zadd: addition on Integ*}
   148 
   132 
   149 lemma zadd: 
   133 lemma zadd: 
   153 apply (subst equiv_intrel [THEN UN_equiv_class2])
   137 apply (subst equiv_intrel [THEN UN_equiv_class2])
   154 apply (auto simp add: congruent2_def)
   138 apply (auto simp add: congruent2_def)
   155 done
   139 done
   156 
   140 
   157 lemma zminus_zadd_distrib [simp]: "- (z + w) = (- z) + (- w::int)"
   141 lemma zminus_zadd_distrib [simp]: "- (z + w) = (- z) + (- w::int)"
   158 apply (rule_tac z = z in eq_Abs_Integ)
   142 apply (rule eq_Abs_Integ [of z])
   159 apply (rule_tac z = w in eq_Abs_Integ)
   143 apply (rule eq_Abs_Integ [of w])
   160 apply (simp (no_asm_simp) add: zminus zadd)
   144 apply (simp add: zminus zadd)
   161 done
   145 done
   162 
   146 
   163 lemma zadd_commute: "(z::int) + w = w + z"
   147 lemma zadd_commute: "(z::int) + w = w + z"
   164 apply (rule_tac z = z in eq_Abs_Integ)
   148 apply (rule eq_Abs_Integ [of z])
   165 apply (rule_tac z = w in eq_Abs_Integ)
   149 apply (rule eq_Abs_Integ [of w])
   166 apply (simp (no_asm_simp) add: add_ac zadd)
   150 apply (simp add: add_ac zadd)
   167 done
   151 done
   168 
   152 
   169 lemma zadd_assoc: "((z1::int) + z2) + z3 = z1 + (z2 + z3)"
   153 lemma zadd_assoc: "((z1::int) + z2) + z3 = z1 + (z2 + z3)"
   170 apply (rule_tac z = z1 in eq_Abs_Integ)
   154 apply (rule eq_Abs_Integ [of z1])
   171 apply (rule_tac z = z2 in eq_Abs_Integ)
   155 apply (rule eq_Abs_Integ [of z2])
   172 apply (rule_tac z = z3 in eq_Abs_Integ)
   156 apply (rule eq_Abs_Integ [of z3])
   173 apply (simp (no_asm_simp) add: zadd add_assoc)
   157 apply (simp add: zadd add_assoc)
   174 done
   158 done
   175 
   159 
   176 (*For AC rewriting*)
   160 (*For AC rewriting*)
   177 lemma zadd_left_commute: "x + (y + z) = y + ((x + z)  ::int)"
   161 lemma zadd_left_commute: "x + (y + z) = y + ((x + z)  ::int)"
   178   apply (rule mk_left_commute [of "op +"])
   162   apply (rule mk_left_commute [of "op +"])
   195 by (simp add: One_int_def zadd_int)
   179 by (simp add: One_int_def zadd_int)
   196 
   180 
   197 (*also for the instance declaration int :: plus_ac0*)
   181 (*also for the instance declaration int :: plus_ac0*)
   198 lemma zadd_0 [simp]: "(0::int) + z = z"
   182 lemma zadd_0 [simp]: "(0::int) + z = z"
   199 apply (unfold Zero_int_def int_def)
   183 apply (unfold Zero_int_def int_def)
   200 apply (rule_tac z = z in eq_Abs_Integ)
   184 apply (rule eq_Abs_Integ [of z])
   201 apply (simp (no_asm_simp) add: zadd)
   185 apply (simp add: zadd)
   202 done
   186 done
   203 
   187 
   204 lemma zadd_0_right [simp]: "z + (0::int) = z"
   188 lemma zadd_0_right [simp]: "z + (0::int) = z"
   205 by (rule trans [OF zadd_commute zadd_0])
   189 by (rule trans [OF zadd_commute zadd_0])
   206 
   190 
   207 lemma zadd_zminus_inverse [simp]: "z + (- z) = (0::int)"
   191 lemma zadd_zminus_inverse [simp]: "z + (- z) = (0::int)"
   208 apply (unfold int_def Zero_int_def)
   192 apply (unfold int_def Zero_int_def)
   209 apply (rule_tac z = z in eq_Abs_Integ)
   193 apply (rule eq_Abs_Integ [of z])
   210 apply (simp (no_asm_simp) add: zminus zadd add_commute)
   194 apply (simp add: zminus zadd add_commute)
   211 done
   195 done
   212 
   196 
   213 lemma zadd_zminus_inverse2 [simp]: "(- z) + z = (0::int)"
   197 lemma zadd_zminus_inverse2 [simp]: "(- z) + z = (0::int)"
   214 apply (rule zadd_commute [THEN trans])
   198 apply (rule zadd_commute [THEN trans])
   215 apply (rule zadd_zminus_inverse)
   199 apply (rule zadd_zminus_inverse)
   234 (** Lemmas **)
   218 (** Lemmas **)
   235 
   219 
   236 lemma zadd_assoc_cong: "(z::int) + v = z' + v' ==> z + (v + w) = z' + (v' + w)"
   220 lemma zadd_assoc_cong: "(z::int) + v = z' + v' ==> z + (v + w) = z' + (v' + w)"
   237 by (simp add: zadd_assoc [symmetric])
   221 by (simp add: zadd_assoc [symmetric])
   238 
   222 
   239 lemma zadd_assoc_swap: "(z::int) + (v + w) = v + (z + w)"
       
   240 by (rule zadd_commute [THEN zadd_assoc_cong])
       
   241 
       
   242 
   223 
   243 subsection{*zmult: multiplication on Integ*}
   224 subsection{*zmult: multiplication on Integ*}
   244 
   225 
   245 (*Congruence property for multiplication*)
   226 text{*Congruence property for multiplication*}
   246 lemma zmult_congruent2: "congruent2 intrel  
   227 lemma zmult_congruent2: "congruent2 intrel  
   247         (%p1 p2. (%(x1,y1). (%(x2,y2).    
   228         (%p1 p2. (%(x1,y1). (%(x2,y2).    
   248                     intrel``{(x1*x2 + y1*y2, x1*y2 + y1*x2)}) p2) p1)"
   229                     intrel``{(x1*x2 + y1*y2, x1*y2 + y1*x2)}) p2) p1)"
   249 apply (rule equiv_intrel [THEN congruent2_commuteI])
   230 apply (rule equiv_intrel [THEN congruent2_commuteI])
   250 apply (rule_tac [2] p=w in PairE)  
   231  apply (force simp add: add_ac mult_ac) 
   251 apply (force simp add: add_ac mult_ac, clarify) 
   232 apply (clarify, simp del: equiv_intrel_iff add: add_ac mult_ac)
   252 apply (simp (no_asm_simp) del: equiv_intrel_iff add: add_ac mult_ac)
       
   253 apply (rename_tac x1 x2 y1 y2 z1 z2)
   233 apply (rename_tac x1 x2 y1 y2 z1 z2)
   254 apply (rule equiv_class_eq [OF equiv_intrel intrel_iff [THEN iffD2]])
   234 apply (rule equiv_class_eq [OF equiv_intrel intrel_iff [THEN iffD2]])
   255 apply (simp add: intrel_def)
   235 apply (subgoal_tac "x1*z1 + y2*z1 = y1*z1 + x2*z1 & x1*z2 + y2*z2 = y1*z2 + x2*z2")
   256 apply (subgoal_tac "x1*z1 + y2*z1 = y1*z1 + x2*z1 & x1*z2 + y2*z2 = y1*z2 + x2*z2", arith)
   236 apply (simp add: mult_ac, arith) 
   257 apply (simp add: add_mult_distrib [symmetric])
   237 apply (simp add: add_mult_distrib [symmetric])
   258 done
   238 done
   259 
   239 
   260 lemma zmult: 
   240 lemma zmult: 
   261    "Abs_Integ((intrel``{(x1,y1)})) * Abs_Integ((intrel``{(x2,y2)})) =    
   241    "Abs_Integ((intrel``{(x1,y1)})) * Abs_Integ((intrel``{(x2,y2)})) =    
   262     Abs_Integ(intrel `` {(x1*x2 + y1*y2, x1*y2 + y1*x2)})"
   242     Abs_Integ(intrel `` {(x1*x2 + y1*y2, x1*y2 + y1*x2)})"
   263 apply (unfold zmult_def)
   243 by (simp add: zmult_def UN_UN_split_split_eq zmult_congruent2 
   264 apply (simp (no_asm_simp) add: UN_UN_split_split_eq zmult_congruent2 equiv_intrel [THEN UN_equiv_class2])
   244               equiv_intrel [THEN UN_equiv_class2])
   265 done
       
   266 
   245 
   267 lemma zmult_zminus: "(- z) * w = - (z * (w::int))"
   246 lemma zmult_zminus: "(- z) * w = - (z * (w::int))"
   268 apply (rule_tac z = z in eq_Abs_Integ)
   247 apply (rule eq_Abs_Integ [of z])
   269 apply (rule_tac z = w in eq_Abs_Integ)
   248 apply (rule eq_Abs_Integ [of w])
   270 apply (simp (no_asm_simp) add: zminus zmult add_ac)
   249 apply (simp add: zminus zmult add_ac)
   271 done
   250 done
   272 
   251 
   273 lemma zmult_commute: "(z::int) * w = w * z"
   252 lemma zmult_commute: "(z::int) * w = w * z"
   274 apply (rule_tac z = z in eq_Abs_Integ)
   253 apply (rule eq_Abs_Integ [of z])
   275 apply (rule_tac z = w in eq_Abs_Integ)
   254 apply (rule eq_Abs_Integ [of w])
   276 apply (simp (no_asm_simp) add: zmult add_ac mult_ac)
   255 apply (simp add: zmult add_ac mult_ac)
   277 done
   256 done
   278 
   257 
   279 lemma zmult_assoc: "((z1::int) * z2) * z3 = z1 * (z2 * z3)"
   258 lemma zmult_assoc: "((z1::int) * z2) * z3 = z1 * (z2 * z3)"
   280 apply (rule_tac z = z1 in eq_Abs_Integ)
   259 apply (rule eq_Abs_Integ [of z1])
   281 apply (rule_tac z = z2 in eq_Abs_Integ)
   260 apply (rule eq_Abs_Integ [of z2])
   282 apply (rule_tac z = z3 in eq_Abs_Integ)
   261 apply (rule eq_Abs_Integ [of z3])
   283 apply (simp (no_asm_simp) add: add_mult_distrib2 zmult add_ac mult_ac)
   262 apply (simp add: add_mult_distrib2 zmult add_ac mult_ac)
   284 done
   263 done
   285 
   264 
   286 lemma zadd_zmult_distrib: "((z1::int) + z2) * w = (z1 * w) + (z2 * w)"
   265 lemma zadd_zmult_distrib: "((z1::int) + z2) * w = (z1 * w) + (z2 * w)"
   287 apply (rule_tac z = z1 in eq_Abs_Integ)
   266 apply (rule eq_Abs_Integ [of z1])
   288 apply (rule_tac z = z2 in eq_Abs_Integ)
   267 apply (rule eq_Abs_Integ [of z2])
   289 apply (rule_tac z = w in eq_Abs_Integ)
   268 apply (rule eq_Abs_Integ [of w])
   290 apply (simp add: add_mult_distrib2 zadd zmult add_ac mult_ac)
   269 apply (simp add: add_mult_distrib2 zadd zmult add_ac mult_ac)
   291 done
   270 done
   292 
   271 
   293 lemma zmult_zminus_right: "w * (- z) = - (w * (z::int))"
   272 lemma zmult_zminus_right: "w * (- z) = - (w * (z::int))"
   294 by (simp add: zmult_commute [of w] zmult_zminus)
   273 by (simp add: zmult_commute [of w] zmult_zminus)
   312 lemma zmult_int: "(int m) * (int n) = int (m * n)"
   291 lemma zmult_int: "(int m) * (int n) = int (m * n)"
   313 by (simp add: int_def zmult)
   292 by (simp add: int_def zmult)
   314 
   293 
   315 lemma zmult_0 [simp]: "0 * z = (0::int)"
   294 lemma zmult_0 [simp]: "0 * z = (0::int)"
   316 apply (unfold Zero_int_def int_def)
   295 apply (unfold Zero_int_def int_def)
   317 apply (rule_tac z = z in eq_Abs_Integ)
   296 apply (rule eq_Abs_Integ [of z])
   318 apply (simp (no_asm_simp) add: zmult)
   297 apply (simp add: zmult)
   319 done
   298 done
   320 
   299 
   321 lemma zmult_1 [simp]: "(1::int) * z = z"
   300 lemma zmult_1 [simp]: "(1::int) * z = z"
   322 apply (unfold One_int_def int_def)
   301 apply (unfold One_int_def int_def)
   323 apply (rule_tac z = z in eq_Abs_Integ)
   302 apply (rule eq_Abs_Integ [of z])
   324 apply (simp (no_asm_simp) add: zmult)
   303 apply (simp add: zmult)
   325 done
   304 done
   326 
   305 
   327 lemma zmult_0_right [simp]: "z * 0 = (0::int)"
   306 lemma zmult_0_right [simp]: "z * 0 = (0::int)"
   328 by (rule trans [OF zmult_commute zmult_0])
   307 by (rule trans [OF zmult_commute zmult_0])
   329 
   308 
   350     hence "(-k + k) + i = (-k + k) + j" by (simp only: eq zadd_assoc)
   329     hence "(-k + k) + i = (-k + k) + j" by (simp only: eq zadd_assoc)
   351     thus "i = j" by simp
   330     thus "i = j" by simp
   352 qed
   331 qed
   353 
   332 
   354 
   333 
   355 subsection{*Theorems about the Ordering*}
   334 subsection{*The @{text "\<le>"} Ordering*}
       
   335 
       
   336 lemma zle: 
       
   337   "(Abs_Integ(intrel``{(x1,y1)}) \<le> Abs_Integ(intrel``{(x2,y2)})) =  
       
   338    (x1 + y2 \<le> x2 + y1)"
       
   339 by (force simp add: zle_def)
       
   340 
       
   341 lemma zle_refl: "w \<le> (w::int)"
       
   342 apply (rule eq_Abs_Integ [of w])
       
   343 apply (force simp add: zle)
       
   344 done
       
   345 
       
   346 lemma zle_trans: "[| i \<le> j; j \<le> k |] ==> i \<le> (k::int)"
       
   347 apply (rule eq_Abs_Integ [of i]) 
       
   348 apply (rule eq_Abs_Integ [of j]) 
       
   349 apply (rule eq_Abs_Integ [of k]) 
       
   350 apply (simp add: zle) 
       
   351 done
       
   352 
       
   353 lemma zle_anti_sym: "[| z \<le> w; w \<le> z |] ==> z = (w::int)"
       
   354 apply (rule eq_Abs_Integ [of w]) 
       
   355 apply (rule eq_Abs_Integ [of z]) 
       
   356 apply (simp add: zle) 
       
   357 done
       
   358 
       
   359 (* Axiom 'order_less_le' of class 'order': *)
       
   360 lemma zless_le: "((w::int) < z) = (w \<le> z & w \<noteq> z)"
       
   361 by (simp add: zless_def)
       
   362 
       
   363 instance int :: order
       
   364 proof qed
       
   365  (assumption |
       
   366   rule zle_refl zle_trans zle_anti_sym zless_le)+
       
   367 
       
   368 (* Axiom 'linorder_linear' of class 'linorder': *)
       
   369 lemma zle_linear: "(z::int) \<le> w | w \<le> z"
       
   370 apply (rule eq_Abs_Integ [of z])
       
   371 apply (rule eq_Abs_Integ [of w])
       
   372 apply (simp add: zle linorder_linear) 
       
   373 done
       
   374 
       
   375 instance int :: plus_ac0
       
   376 proof qed (rule zadd_commute zadd_assoc zadd_0)+
       
   377 
       
   378 instance int :: linorder
       
   379 proof qed (rule zle_linear)
       
   380 
       
   381 
       
   382 lemmas zless_linear = linorder_less_linear [where 'a = int]
       
   383 
       
   384 
       
   385 lemma int_eq_0_conv [simp]: "(int n = 0) = (n = 0)"
       
   386 by (simp add: Zero_int_def)
   356 
   387 
   357 (*This lemma allows direct proofs of other <-properties*)
   388 (*This lemma allows direct proofs of other <-properties*)
   358 lemma zless_iff_Suc_zadd: 
   389 lemma zless_iff_Suc_zadd: 
   359     "(w < z) = (\<exists>n. z = w + int(Suc n))"
   390     "(w < z) = (\<exists>n. z = w + int(Suc n))"
   360 apply (unfold zless_def neg_def zdiff_def int_def)
   391 apply (rule eq_Abs_Integ [of z])
   361 apply (rule_tac z = z in eq_Abs_Integ)
   392 apply (rule eq_Abs_Integ [of w])
   362 apply (rule_tac z = w in eq_Abs_Integ, clarify)
   393 apply (simp add: linorder_not_le [where 'a = int, symmetric] 
   363 apply (simp add: zadd zminus)
   394                  linorder_not_le [where 'a = nat] 
       
   395                  zle int_def zdiff_def zadd zminus) 
   364 apply (safe dest!: less_imp_Suc_add)
   396 apply (safe dest!: less_imp_Suc_add)
   365 apply (rule_tac x = k in exI)
   397 apply (rule_tac x = k in exI)
   366 apply (simp_all add: add_ac)
   398 apply (simp_all add: add_ac)
   367 done
   399 done
   368 
   400 
   369 lemma zless_zadd_Suc: "z < z + int (Suc n)"
       
   370 by (auto simp add: zless_iff_Suc_zadd zadd_assoc zadd_int)
       
   371 
       
   372 lemma zless_trans: "[| z1<z2; z2<z3 |] ==> z1 < (z3::int)"
       
   373 by (auto simp add: zless_iff_Suc_zadd zadd_assoc zadd_int)
       
   374 
       
   375 lemma zless_not_sym: "!!w::int. z<w ==> ~w<z"
       
   376 apply (safe dest!: zless_iff_Suc_zadd [THEN iffD1])
       
   377 apply (rule_tac z = z in eq_Abs_Integ, safe)
       
   378 apply (simp add: int_def zadd)
       
   379 done
       
   380 
       
   381 (* [| n<m;  ~P ==> m<n |] ==> P *)
       
   382 lemmas zless_asym = zless_not_sym [THEN swap, standard]
       
   383 
       
   384 lemma zless_not_refl: "!!z::int. ~ z<z"
       
   385 apply (rule zless_asym [THEN notI])
       
   386 apply (assumption+)
       
   387 done
       
   388 
       
   389 (* z<z ==> R *)
       
   390 lemmas zless_irrefl = zless_not_refl [THEN notE, standard, elim!]
       
   391 
       
   392 
       
   393 (*"Less than" is a linear ordering*)
       
   394 lemma zless_linear: 
       
   395     "z<w | z=w | w<(z::int)"
       
   396 apply (unfold zless_def neg_def zdiff_def)
       
   397 apply (rule_tac z = z in eq_Abs_Integ)
       
   398 apply (rule_tac z = w in eq_Abs_Integ, safe)
       
   399 apply (simp add: zadd zminus Image_iff Bex_def)
       
   400 apply (rule_tac m1 = "x+ya" and n1 = "xa+y" in less_linear [THEN disjE])
       
   401 apply (force simp add: add_ac)+
       
   402 done
       
   403 
       
   404 lemma int_neq_iff: "!!w::int. (w ~= z) = (w<z | z<w)"
       
   405 by (cut_tac zless_linear, blast)
       
   406 
       
   407 (*** eliminates ~= in premises ***)
       
   408 lemmas int_neqE = int_neq_iff [THEN iffD1, THEN disjE, standard]
       
   409 
       
   410 lemma int_eq_0_conv [simp]: "(int n = 0) = (n = 0)"
       
   411 by (simp add: Zero_int_def)
       
   412 
       
   413 lemma zless_int [simp]: "(int m < int n) = (m<n)"
   401 lemma zless_int [simp]: "(int m < int n) = (m<n)"
   414 by (simp add: less_iff_Suc_add zless_iff_Suc_zadd zadd_int)
   402 by (simp add: less_iff_Suc_add zless_iff_Suc_zadd zadd_int)
   415 
   403 
   416 lemma int_less_0_conv [simp]: "~ (int k < 0)"
   404 lemma int_less_0_conv [simp]: "~ (int k < 0)"
   417 by (simp add: Zero_int_def)
   405 by (simp add: Zero_int_def)
   423 by (simp only: Zero_int_def One_int_def One_nat_def zless_int)
   411 by (simp only: Zero_int_def One_int_def One_nat_def zless_int)
   424 
   412 
   425 lemma int_0_neq_1 [simp]: "0 \<noteq> (1::int)"
   413 lemma int_0_neq_1 [simp]: "0 \<noteq> (1::int)"
   426 by (simp only: Zero_int_def One_int_def One_nat_def int_int_eq)
   414 by (simp only: Zero_int_def One_int_def One_nat_def int_int_eq)
   427 
   415 
   428 
   416 lemma zle_int [simp]: "(int m \<le> int n) = (m\<le>n)"
   429 subsection{*Properties of the @{text "\<le>"} Relation*}
   417 by (simp add: linorder_not_less [symmetric])
   430 
   418 
   431 lemma zle_int [simp]: "(int m <= int n) = (m<=n)"
   419 lemma zero_zle_int [simp]: "(0 \<le> int n)"
   432 by (simp add: zle_def le_def)
       
   433 
       
   434 lemma zero_zle_int [simp]: "(0 <= int n)"
       
   435 by (simp add: Zero_int_def)
   420 by (simp add: Zero_int_def)
   436 
   421 
   437 lemma int_le_0_conv [simp]: "(int n <= 0) = (n = 0)"
   422 lemma int_le_0_conv [simp]: "(int n \<le> 0) = (n = 0)"
   438 by (simp add: Zero_int_def)
   423 by (simp add: Zero_int_def)
   439 
   424 
   440 lemma zle_imp_zless_or_eq: "z <= w ==> z < w | z=(w::int)"
   425 lemma int_0 [simp]: "int 0 = (0::int)"
   441 apply (unfold zle_def)
   426 by (simp add: Zero_int_def)
   442 apply (cut_tac zless_linear)
   427 
   443 apply (blast elim: zless_asym)
   428 lemma int_1 [simp]: "int 1 = 1"
   444 done
   429 by (simp add: One_int_def)
   445 
   430 
   446 lemma zless_or_eq_imp_zle: "z<w | z=w ==> z <= (w::int)"
   431 lemma int_Suc0_eq_1: "int (Suc 0) = 1"
   447 apply (unfold zle_def)
   432 by (simp add: One_int_def One_nat_def)
   448 apply (cut_tac zless_linear)
   433 
   449 apply (blast elim: zless_asym)
   434 subsection{*Monotonicity results*}
   450 done
   435 
   451 
   436 lemma zadd_left_mono: "i \<le> j ==> k + i \<le> k + (j::int)" 
   452 lemma int_le_less: "(x <= (y::int)) = (x < y | x=y)"
   437 apply (rule eq_Abs_Integ [of i]) 
   453 apply (rule iffI) 
   438 apply (rule eq_Abs_Integ [of j]) 
   454 apply (erule zle_imp_zless_or_eq) 
   439 apply (rule eq_Abs_Integ [of k]) 
   455 apply (erule zless_or_eq_imp_zle) 
   440 apply (simp add: zle zadd) 
   456 done
   441 done
   457 
   442 
   458 lemma zle_refl: "w <= (w::int)"
   443 lemma zadd_strict_right_mono: "i < j ==> i + k < j + (k::int)" 
   459 by (simp add: int_le_less)
   444 apply (rule eq_Abs_Integ [of i]) 
   460 
   445 apply (rule eq_Abs_Integ [of j]) 
   461 (* Axiom 'linorder_linear' of class 'linorder': *)
   446 apply (rule eq_Abs_Integ [of k]) 
   462 lemma zle_linear: "(z::int) <= w | w <= z"
   447 apply (simp add: linorder_not_le [where 'a = int, symmetric] 
   463 apply (simp add: int_le_less)
   448                  linorder_not_le [where 'a = nat]  zle zadd)
   464 apply (cut_tac zless_linear, blast)
   449 done
   465 done
   450 
   466 
   451 lemma zadd_zless_mono: "[| w'<w; z'\<le>z |] ==> w' + z' < w + (z::int)"
   467 (* Axiom 'order_trans of class 'order': *)
   452 by (rule order_less_le_trans [OF zadd_strict_right_mono zadd_left_mono]) 
   468 lemma zle_trans: "[| i <= j; j <= k |] ==> i <= (k::int)"
   453 
   469 apply (drule zle_imp_zless_or_eq) 
   454 
   470 apply (drule zle_imp_zless_or_eq) 
   455 subsection{*Strict Monotonicity of Multiplication*}
   471 apply (rule zless_or_eq_imp_zle) 
   456 
   472 apply (blast intro: zless_trans) 
   457 text{*strict, in 1st argument; proof is by induction on k>0*}
   473 done
   458 lemma zmult_zless_mono2_lemma [rule_format]:
   474 
   459      "i<j ==> 0<k --> int k * i < int k * j"
   475 lemma zle_anti_sym: "[| z <= w; w <= z |] ==> z = (w::int)"
   460 apply (induct_tac "k", simp) 
   476 apply (drule zle_imp_zless_or_eq) 
   461 apply (simp add: int_Suc)
   477 apply (drule zle_imp_zless_or_eq) 
   462 apply (case_tac "n=0")
   478 apply (blast elim: zless_asym) 
   463 apply (simp_all add: zadd_zmult_distrib int_Suc0_eq_1 order_le_less)
   479 done
   464 apply (simp add: zadd_zless_mono int_Suc0_eq_1 order_le_less)
   480 
   465 done
   481 (* Axiom 'order_less_le' of class 'order': *)
   466 
   482 lemma int_less_le: "((w::int) < z) = (w <= z & w ~= z)"
   467 lemma zero_le_imp_eq_int: "0 \<le> k ==> \<exists>n. k = int n"
   483 apply (simp add: zle_def int_neq_iff)
   468 apply (rule eq_Abs_Integ [of k]) 
   484 apply (blast elim!: zless_asym)
   469 apply (auto simp add: zle zadd int_def Zero_int_def)
   485 done
   470 apply (rule_tac x="x-y" in exI, simp) 
   486 
   471 done
   487 instance int :: order
   472 
   488 proof qed (assumption | rule zle_refl zle_trans zle_anti_sym int_less_le)+
   473 lemma zmult_zless_mono2: "[| i<j;  (0::int) < k |] ==> k*i < k*j"
   489 
   474 apply (frule order_less_imp_le [THEN zero_le_imp_eq_int]) 
   490 instance int :: plus_ac0
   475 apply (auto simp add: zmult_zless_mono2_lemma) 
   491 proof qed (rule zadd_commute zadd_assoc zadd_0)+
   476 done
   492 
   477 
   493 instance int :: linorder
   478 
   494 proof qed (rule zle_linear)
   479 defs (overloaded)
   495 
   480     zabs_def:  "abs(i::int) == if i < 0 then -i else i"
   496 
   481 
   497 lemma zadd_left_cancel [simp]: "!!w::int. (z + w' = z + w) = (w' = w)"
   482 
   498   by (rule add_left_cancel) 
   483 text{*The Integers Form an Ordered Ring*}
   499 
   484 instance int :: ordered_ring
   500 
   485 proof
       
   486   fix i j k :: int
       
   487   show "0 < (1::int)" by (rule int_0_less_1)
       
   488   show "i \<le> j ==> k + i \<le> k + j" by (rule zadd_left_mono)
       
   489   show "i < j ==> 0 < k ==> k * i < k * j" by (rule zmult_zless_mono2)
       
   490   show "\<bar>i\<bar> = (if i < 0 then -i else i)" by (simp only: zabs_def)
       
   491 qed
       
   492 
       
   493 
       
   494 subsection{*Magnitide of an Integer, as a Natural Number: @{term nat}*}
       
   495 
       
   496 constdefs
       
   497    nat  :: "int => nat"
       
   498     "nat(Z) == if Z<0 then 0 else (THE m. Z = int m)"
       
   499 
       
   500 lemma nat_int [simp]: "nat(int n) = n"
       
   501 by (unfold nat_def, auto)
       
   502 
       
   503 lemma nat_zero [simp]: "nat 0 = 0"
       
   504 apply (unfold Zero_int_def)
       
   505 apply (rule nat_int)
       
   506 done
       
   507 
       
   508 lemma nat_0_le [simp]: "0 \<le> z ==> int (nat z) = z"
       
   509 apply (rule eq_Abs_Integ [of z]) 
       
   510 apply (simp add: nat_def linorder_not_le [symmetric] zle int_def Zero_int_def)
       
   511 apply (subgoal_tac "(THE m. x = m + y) = x-y")
       
   512 apply (auto simp add: the_equality) 
       
   513 done
       
   514 
       
   515 lemma nat_le_0 [simp]: "z \<le> 0 ==> nat z = 0"
       
   516 by (simp add: nat_def  order_less_le eq_commute [of 0])
       
   517 
       
   518 text{*An alternative condition is @{term "0 \<le> w"} *}
       
   519 lemma nat_mono_iff: "0 < z ==> (nat w < nat z) = (w < z)"
       
   520 apply (subst zless_int [symmetric])
       
   521 apply (simp add: order_le_less)
       
   522 apply (case_tac "w < 0")
       
   523  apply (simp add: order_less_imp_le)
       
   524  apply (blast intro: order_less_trans)
       
   525 apply (simp add: linorder_not_less)
       
   526 done
       
   527 
       
   528 lemma zless_nat_conj: "(nat w < nat z) = (0 < z & w < z)"
       
   529 apply (case_tac "0 < z")
       
   530 apply (auto simp add: nat_mono_iff linorder_not_less)
       
   531 done
       
   532 
       
   533 
       
   534 subsection{*Lemmas about the Function @{term int} and Orderings*}
       
   535 
       
   536 lemma negative_zless_0: "- (int (Suc n)) < 0"
       
   537 by (simp add: zless_def)
       
   538 
       
   539 lemma negative_zless [iff]: "- (int (Suc n)) < int m"
       
   540 by (rule negative_zless_0 [THEN order_less_le_trans], simp)
       
   541 
       
   542 lemma negative_zle_0: "- int n \<le> 0"
       
   543 by (simp add: minus_le_iff)
       
   544 
       
   545 lemma negative_zle [iff]: "- int n \<le> int m"
       
   546 by (rule order_trans [OF negative_zle_0 zero_zle_int])
       
   547 
       
   548 lemma not_zle_0_negative [simp]: "~ (0 \<le> - (int (Suc n)))"
       
   549 by (subst le_minus_iff, simp)
       
   550 
       
   551 lemma int_zle_neg: "(int n \<le> - int m) = (n = 0 & m = 0)"
       
   552 apply safe 
       
   553 apply (drule_tac [2] le_minus_iff [THEN iffD1])
       
   554 apply (auto dest: zle_trans [OF _ negative_zle_0]) 
       
   555 done
       
   556 
       
   557 lemma not_int_zless_negative [simp]: "~ (int n < - int m)"
       
   558 by (simp add: linorder_not_less)
       
   559 
       
   560 lemma negative_eq_positive [simp]: "(- int n = int m) = (n = 0 & m = 0)"
       
   561 by (force simp add: order_eq_iff [of "- int n"] int_zle_neg)
       
   562 
       
   563 lemma zle_iff_zadd: "(w \<le> z) = (\<exists>n. z = w + int n)"
       
   564 by (force intro: exI [of _ "0::nat"] 
       
   565             intro!: not_sym [THEN not0_implies_Suc]
       
   566             simp add: zless_iff_Suc_zadd order_le_less)
       
   567 
       
   568 
       
   569 text{*This version is proved for all ordered rings, not just integers!
       
   570       It is proved here because attribute @{text arith_split} is not available
       
   571       in theory @{text Ring_and_Field}.
       
   572       But is it really better than just rewriting with @{text abs_if}?*}
       
   573 lemma abs_split [arith_split]:
       
   574      "P(abs(a::'a::ordered_ring)) = ((0 \<le> a --> P a) & (a < 0 --> P(-a)))"
       
   575 by (force dest: order_less_le_trans simp add: abs_if linorder_not_less)
       
   576 
       
   577 lemma abs_int_eq [simp]: "abs (int m) = int m"
       
   578 by (simp add: zabs_def)
       
   579 
       
   580 
       
   581 subsection{*Misc Results*}
       
   582 
       
   583 lemma nat_zminus_int [simp]: "nat(- (int n)) = 0"
       
   584 by (auto simp add: nat_def zero_reorient minus_less_iff)
       
   585 
       
   586 lemma zless_nat_eq_int_zless: "(m < nat z) = (int m < z)"
       
   587 apply (case_tac "0 \<le> z")
       
   588 apply (erule nat_0_le [THEN subst], simp) 
       
   589 apply (simp add: linorder_not_le)
       
   590 apply (auto dest: order_less_trans simp add: order_less_imp_le)
       
   591 done
       
   592 
       
   593 
       
   594 
       
   595 subsection{*Monotonicity of Multiplication*}
       
   596 
       
   597 lemma zmult_zle_mono2: "[| i \<le> j;  (0::int) \<le> k |] ==> k*i \<le> k*j"
       
   598   by (rule Ring_and_Field.mult_left_mono)
       
   599 
       
   600 lemma zmult_zless_cancel2: "(m*k < n*k) = (((0::int) < k & m<n) | (k<0 & n<m))"
       
   601   by (rule Ring_and_Field.mult_less_cancel_right)
       
   602 
       
   603 lemma zmult_zless_cancel1:
       
   604      "(k*m < k*n) = (((0::int) < k & m<n) | (k < 0 & n<m))"
       
   605   by (rule Ring_and_Field.mult_less_cancel_left)
       
   606 
       
   607 lemma zmult_zle_cancel1:
       
   608      "(k*m \<le> k*n) = (((0::int) < k --> m\<le>n) & (k < 0 --> n\<le>m))"
       
   609   by (rule Ring_and_Field.mult_le_cancel_left)
       
   610 
       
   611 
       
   612 
       
   613 text{*A case theorem distinguishing non-negative and negative int*}
       
   614 
       
   615 lemma negD: "x<0 ==> \<exists>n. x = - (int (Suc n))"
       
   616 by (auto simp add: zless_iff_Suc_zadd 
       
   617                    diff_eq_eq [symmetric] zdiff_def)
       
   618 
       
   619 lemma int_cases [cases type: int, case_names nonneg neg]: 
       
   620      "[|!! n. z = int n ==> P;  !! n. z =  - (int (Suc n)) ==> P |] ==> P"
       
   621 apply (case_tac "z < 0", blast dest!: negD)
       
   622 apply (simp add: linorder_not_less)
       
   623 apply (blast dest: nat_0_le [THEN sym])
       
   624 done
       
   625 
       
   626 lemma int_induct [induct type: int, case_names nonneg neg]: 
       
   627      "[|!! n. P (int n);  !!n. P (- (int (Suc n))) |] ==> P z"
       
   628   by (cases z) auto
       
   629 
       
   630 
       
   631 subsection{*The Constants @{term neg} and @{term iszero}*}
       
   632 
       
   633 constdefs
       
   634 
       
   635   neg   :: "'a::ordered_ring => bool"
       
   636   "neg(Z) == Z < 0"
       
   637 
       
   638   (*For simplifying equalities*)
       
   639   iszero :: "'a::semiring => bool"
       
   640   "iszero z == z = (0)"
       
   641   
       
   642 
       
   643 lemma not_neg_int [simp]: "~ neg(int n)"
       
   644 by (simp add: neg_def)
       
   645 
       
   646 lemma neg_zminus_int [simp]: "neg(- (int (Suc n)))"
       
   647 by (simp add: neg_def neg_less_0_iff_less)
       
   648 
       
   649 lemmas neg_eq_less_0 = neg_def
       
   650 
       
   651 lemma not_neg_eq_ge_0: "(~neg x) = (0 \<le> x)"
       
   652 by (simp add: neg_def linorder_not_less)
       
   653 
       
   654 subsection{*To simplify inequalities when Numeral1 can get simplified to 1*}
       
   655 
       
   656 lemma not_neg_0: "~ neg 0"
       
   657 by (simp add: One_int_def neg_def)
       
   658 
       
   659 lemma not_neg_1: "~ neg 1"
       
   660 by (simp add: neg_def linorder_not_less zero_le_one) 
       
   661 
       
   662 lemma iszero_0: "iszero 0"
       
   663 by (simp add: iszero_def)
       
   664 
       
   665 lemma not_iszero_1: "~ iszero 1"
       
   666 by (simp add: iszero_def eq_commute) 
       
   667 
       
   668 lemma neg_nat: "neg z ==> nat z = 0"
       
   669 by (simp add: nat_def neg_def) 
       
   670 
       
   671 lemma not_neg_nat: "~ neg z ==> int (nat z) = z"
       
   672 by (simp add: linorder_not_less neg_def)
       
   673 
       
   674 
       
   675 subsection{*Embedding of the Naturals into any Semiring: @{term of_nat}*}
       
   676 
       
   677 consts of_nat :: "nat => 'a::semiring"
       
   678 
       
   679 primrec
       
   680   of_nat_0:   "of_nat 0 = 0"
       
   681   of_nat_Suc: "of_nat (Suc m) = of_nat m + 1"
       
   682 
       
   683 lemma of_nat_1 [simp]: "of_nat 1 = 1"
       
   684 by simp
       
   685 
       
   686 lemma of_nat_add [simp]: "of_nat (m+n) = of_nat m + of_nat n"
       
   687 apply (induct m)
       
   688 apply (simp_all add: add_ac) 
       
   689 done
       
   690 
       
   691 lemma of_nat_mult [simp]: "of_nat (m*n) = of_nat m * of_nat n"
       
   692 apply (induct m) 
       
   693 apply (simp_all add: mult_ac add_ac right_distrib) 
       
   694 done
       
   695 
       
   696 lemma zero_le_imp_of_nat: "0 \<le> (of_nat m::'a::ordered_semiring)"
       
   697 apply (induct m, simp_all) 
       
   698 apply (erule order_trans) 
       
   699 apply (rule less_add_one [THEN order_less_imp_le]) 
       
   700 done
       
   701 
       
   702 lemma less_imp_of_nat_less:
       
   703      "m < n ==> of_nat m < (of_nat n::'a::ordered_semiring)"
       
   704 apply (induct m n rule: diff_induct, simp_all) 
       
   705 apply (insert add_le_less_mono [OF zero_le_imp_of_nat zero_less_one], force) 
       
   706 done
       
   707 
       
   708 lemma of_nat_less_imp_less:
       
   709      "of_nat m < (of_nat n::'a::ordered_semiring) ==> m < n"
       
   710 apply (induct m n rule: diff_induct, simp_all) 
       
   711 apply (insert zero_le_imp_of_nat) 
       
   712 apply (force simp add: linorder_not_less [symmetric]) 
       
   713 done
       
   714 
       
   715 lemma of_nat_less_iff [simp]:
       
   716      "(of_nat m < (of_nat n::'a::ordered_semiring)) = (m<n)"
       
   717 by (blast intro: of_nat_less_imp_less less_imp_of_nat_less ) 
       
   718 
       
   719 text{*Special cases where either operand is zero*}
       
   720 declare of_nat_less_iff [of 0, simplified, simp]
       
   721 declare of_nat_less_iff [of _ 0, simplified, simp]
       
   722 
       
   723 lemma of_nat_le_iff [simp]:
       
   724      "(of_nat m \<le> (of_nat n::'a::ordered_semiring)) = (m \<le> n)"
       
   725 by (simp add: linorder_not_less [symmetric]) 
       
   726 
       
   727 text{*Special cases where either operand is zero*}
       
   728 declare of_nat_le_iff [of 0, simplified, simp]
       
   729 declare of_nat_le_iff [of _ 0, simplified, simp]
       
   730 
       
   731 lemma of_nat_eq_iff [simp]:
       
   732      "(of_nat m = (of_nat n::'a::ordered_semiring)) = (m = n)"
       
   733 by (simp add: order_eq_iff) 
       
   734 
       
   735 text{*Special cases where either operand is zero*}
       
   736 declare of_nat_eq_iff [of 0, simplified, simp]
       
   737 declare of_nat_eq_iff [of _ 0, simplified, simp]
       
   738 
       
   739 lemma of_nat_diff [simp]:
       
   740      "n \<le> m ==> of_nat (m - n) = of_nat m - (of_nat n :: 'a::ring)"
       
   741 by (simp del: of_nat_add
       
   742 	 add: compare_rls of_nat_add [symmetric] split add: nat_diff_split) 
       
   743 
       
   744 
       
   745 subsection{*The Set of Natural Numbers*}
       
   746 
       
   747 constdefs
       
   748    Nats  :: "'a::semiring set"
       
   749     "Nats == range of_nat"
       
   750 
       
   751 syntax (xsymbols)    Nats :: "'a set"   ("\<nat>")
       
   752 
       
   753 lemma of_nat_in_Nats [simp]: "of_nat n \<in> Nats"
       
   754 by (simp add: Nats_def) 
       
   755 
       
   756 lemma Nats_0 [simp]: "0 \<in> Nats"
       
   757 apply (simp add: Nats_def) 
       
   758 apply (rule range_eqI) 
       
   759 apply (rule of_nat_0 [symmetric])
       
   760 done
       
   761 
       
   762 lemma Nats_1 [simp]: "1 \<in> Nats"
       
   763 apply (simp add: Nats_def) 
       
   764 apply (rule range_eqI) 
       
   765 apply (rule of_nat_1 [symmetric])
       
   766 done
       
   767 
       
   768 lemma Nats_add [simp]: "[|a \<in> Nats; b \<in> Nats|] ==> a+b \<in> Nats"
       
   769 apply (auto simp add: Nats_def) 
       
   770 apply (rule range_eqI) 
       
   771 apply (rule of_nat_add [symmetric])
       
   772 done
       
   773 
       
   774 lemma Nats_mult [simp]: "[|a \<in> Nats; b \<in> Nats|] ==> a*b \<in> Nats"
       
   775 apply (auto simp add: Nats_def) 
       
   776 apply (rule range_eqI) 
       
   777 apply (rule of_nat_mult [symmetric])
       
   778 done
       
   779 
       
   780 text{*Agreement with the specific embedding for the integers*}
       
   781 lemma int_eq_of_nat: "int = (of_nat :: nat => int)"
       
   782 proof
       
   783   fix n
       
   784   show "int n = of_nat n"  by (induct n, simp_all add: int_Suc add_ac) 
       
   785 qed
       
   786 
       
   787 
       
   788 subsection{*Embedding of the Integers into any Ring: @{term of_int}*}
       
   789 
       
   790 constdefs
       
   791    of_int :: "int => 'a::ring"
       
   792    "of_int z ==
       
   793       (THE a. \<exists>i j. (i,j) \<in> Rep_Integ z & a = (of_nat i) - (of_nat j))"
       
   794 
       
   795 
       
   796 lemma of_int: "of_int (Abs_Integ (intrel `` {(i,j)})) = of_nat i - of_nat j"
       
   797 apply (simp add: of_int_def)
       
   798 apply (rule the_equality, auto) 
       
   799 apply (simp add: compare_rls add_ac of_nat_add [symmetric]
       
   800             del: of_nat_add) 
       
   801 done
       
   802 
       
   803 lemma of_int_0 [simp]: "of_int 0 = 0"
       
   804 by (simp add: of_int Zero_int_def int_def)
       
   805 
       
   806 lemma of_int_1 [simp]: "of_int 1 = 1"
       
   807 by (simp add: of_int One_int_def int_def)
       
   808 
       
   809 lemma of_int_add [simp]: "of_int (w+z) = of_int w + of_int z"
       
   810 apply (rule eq_Abs_Integ [of w])
       
   811 apply (rule eq_Abs_Integ [of z])
       
   812 apply (simp add: compare_rls of_int zadd) 
       
   813 done
       
   814 
       
   815 lemma of_int_minus [simp]: "of_int (-z) = - (of_int z)"
       
   816 apply (rule eq_Abs_Integ [of z])
       
   817 apply (simp add: compare_rls of_int zminus) 
       
   818 done
       
   819 
       
   820 lemma of_int_diff [simp]: "of_int (w-z) = of_int w - of_int z"
       
   821 by (simp add: diff_minus)
       
   822 
       
   823 lemma of_int_mult [simp]: "of_int (w*z) = of_int w * of_int z"
       
   824 apply (rule eq_Abs_Integ [of w])
       
   825 apply (rule eq_Abs_Integ [of z])
       
   826 apply (simp add: compare_rls of_int left_diff_distrib right_diff_distrib 
       
   827                  zmult add_ac) 
       
   828 done
       
   829 
       
   830 lemma of_int_le_iff [simp]:
       
   831      "(of_int w \<le> (of_int z::'a::ordered_ring)) = (w \<le> z)"
       
   832 apply (rule eq_Abs_Integ [of w])
       
   833 apply (rule eq_Abs_Integ [of z])
       
   834 apply (simp add: compare_rls of_int zle zdiff_def zadd zminus 
       
   835                  of_nat_add [symmetric]   del: of_nat_add) 
       
   836 done
       
   837 
       
   838 text{*Special cases where either operand is zero*}
       
   839 declare of_int_le_iff [of 0, simplified, simp]
       
   840 declare of_int_le_iff [of _ 0, simplified, simp]
       
   841 
       
   842 lemma of_int_less_iff [simp]:
       
   843      "(of_int w < (of_int z::'a::ordered_ring)) = (w < z)"
       
   844 by (simp add: linorder_not_le [symmetric])
       
   845 
       
   846 text{*Special cases where either operand is zero*}
       
   847 declare of_int_less_iff [of 0, simplified, simp]
       
   848 declare of_int_less_iff [of _ 0, simplified, simp]
       
   849 
       
   850 lemma of_int_eq_iff [simp]:
       
   851      "(of_int w = (of_int z::'a::ordered_ring)) = (w = z)"
       
   852 by (simp add: order_eq_iff) 
       
   853 
       
   854 text{*Special cases where either operand is zero*}
       
   855 declare of_int_eq_iff [of 0, simplified, simp]
       
   856 declare of_int_eq_iff [of _ 0, simplified, simp]
       
   857 
       
   858 
       
   859 subsection{*The Set of Integers*}
       
   860 
       
   861 constdefs
       
   862    Ints  :: "'a::ring set"
       
   863     "Ints == range of_int"
       
   864 
       
   865 
       
   866 syntax (xsymbols)
       
   867   Ints      :: "'a set"                   ("\<int>")
       
   868 
       
   869 lemma Ints_0 [simp]: "0 \<in> Ints"
       
   870 apply (simp add: Ints_def) 
       
   871 apply (rule range_eqI) 
       
   872 apply (rule of_int_0 [symmetric])
       
   873 done
       
   874 
       
   875 lemma Ints_1 [simp]: "1 \<in> Ints"
       
   876 apply (simp add: Ints_def) 
       
   877 apply (rule range_eqI) 
       
   878 apply (rule of_int_1 [symmetric])
       
   879 done
       
   880 
       
   881 lemma Ints_add [simp]: "[|a \<in> Ints; b \<in> Ints|] ==> a+b \<in> Ints"
       
   882 apply (auto simp add: Ints_def) 
       
   883 apply (rule range_eqI) 
       
   884 apply (rule of_int_add [symmetric])
       
   885 done
       
   886 
       
   887 lemma Ints_minus [simp]: "a \<in> Ints ==> -a \<in> Ints"
       
   888 apply (auto simp add: Ints_def) 
       
   889 apply (rule range_eqI) 
       
   890 apply (rule of_int_minus [symmetric])
       
   891 done
       
   892 
       
   893 lemma Ints_diff [simp]: "[|a \<in> Ints; b \<in> Ints|] ==> a-b \<in> Ints"
       
   894 apply (auto simp add: Ints_def) 
       
   895 apply (rule range_eqI) 
       
   896 apply (rule of_int_diff [symmetric])
       
   897 done
       
   898 
       
   899 lemma Ints_mult [simp]: "[|a \<in> Ints; b \<in> Ints|] ==> a*b \<in> Ints"
       
   900 apply (auto simp add: Ints_def) 
       
   901 apply (rule range_eqI) 
       
   902 apply (rule of_int_mult [symmetric])
       
   903 done
       
   904 
       
   905 text{*Collapse nested embeddings*}
       
   906 lemma of_int_of_nat_eq [simp]: "of_int (of_nat n) = of_nat n"
       
   907 by (induct n, auto) 
       
   908 
       
   909 lemma of_int_int_eq [simp]: "of_int (int n) = int n"
       
   910 by (simp add: int_eq_of_nat) 
       
   911 
       
   912 
       
   913 lemma Ints_cases [case_names of_int, cases set: Ints]:
       
   914   "q \<in> \<int> ==> (!!z. q = of_int z ==> C) ==> C"
       
   915 proof (unfold Ints_def)
       
   916   assume "!!z. q = of_int z ==> C"
       
   917   assume "q \<in> range of_int" thus C ..
       
   918 qed
       
   919 
       
   920 lemma Ints_induct [case_names of_int, induct set: Ints]:
       
   921   "q \<in> \<int> ==> (!!z. P (of_int z)) ==> P q"
       
   922   by (rule Ints_cases) auto
       
   923 
       
   924 
       
   925 
       
   926 (*Legacy ML bindings, but no longer the structure Int.*)
   501 ML
   927 ML
   502 {*
   928 {*
       
   929 val zabs_def = thm "zabs_def"
       
   930 val nat_def  = thm "nat_def"
       
   931 
       
   932 val int_0 = thm "int_0";
       
   933 val int_1 = thm "int_1";
       
   934 val int_Suc0_eq_1 = thm "int_Suc0_eq_1";
       
   935 val neg_eq_less_0 = thm "neg_eq_less_0";
       
   936 val not_neg_eq_ge_0 = thm "not_neg_eq_ge_0";
       
   937 val not_neg_0 = thm "not_neg_0";
       
   938 val not_neg_1 = thm "not_neg_1";
       
   939 val iszero_0 = thm "iszero_0";
       
   940 val not_iszero_1 = thm "not_iszero_1";
       
   941 val int_0_less_1 = thm "int_0_less_1";
       
   942 val int_0_neq_1 = thm "int_0_neq_1";
       
   943 val negative_zless = thm "negative_zless";
       
   944 val negative_zle = thm "negative_zle";
       
   945 val not_zle_0_negative = thm "not_zle_0_negative";
       
   946 val not_int_zless_negative = thm "not_int_zless_negative";
       
   947 val negative_eq_positive = thm "negative_eq_positive";
       
   948 val zle_iff_zadd = thm "zle_iff_zadd";
       
   949 val abs_int_eq = thm "abs_int_eq";
       
   950 val abs_split = thm"abs_split";
       
   951 val nat_int = thm "nat_int";
       
   952 val nat_zminus_int = thm "nat_zminus_int";
       
   953 val nat_zero = thm "nat_zero";
       
   954 val not_neg_nat = thm "not_neg_nat";
       
   955 val neg_nat = thm "neg_nat";
       
   956 val zless_nat_eq_int_zless = thm "zless_nat_eq_int_zless";
       
   957 val nat_0_le = thm "nat_0_le";
       
   958 val nat_le_0 = thm "nat_le_0";
       
   959 val zless_nat_conj = thm "zless_nat_conj";
       
   960 val int_cases = thm "int_cases";
       
   961 
   503 val int_def = thm "int_def";
   962 val int_def = thm "int_def";
   504 val neg_def = thm "neg_def";
       
   505 val iszero_def = thm "iszero_def";
       
   506 val Zero_int_def = thm "Zero_int_def";
   963 val Zero_int_def = thm "Zero_int_def";
   507 val One_int_def = thm "One_int_def";
   964 val One_int_def = thm "One_int_def";
   508 val zadd_def = thm "zadd_def";
   965 val zadd_def = thm "zadd_def";
   509 val zdiff_def = thm "zdiff_def";
   966 val zdiff_def = thm "zdiff_def";
   510 val zless_def = thm "zless_def";
   967 val zless_def = thm "zless_def";
   522 val zminus = thm "zminus";
   979 val zminus = thm "zminus";
   523 val eq_Abs_Integ = thm "eq_Abs_Integ";
   980 val eq_Abs_Integ = thm "eq_Abs_Integ";
   524 val zminus_zminus = thm "zminus_zminus";
   981 val zminus_zminus = thm "zminus_zminus";
   525 val inj_zminus = thm "inj_zminus";
   982 val inj_zminus = thm "inj_zminus";
   526 val zminus_0 = thm "zminus_0";
   983 val zminus_0 = thm "zminus_0";
   527 val not_neg_int = thm "not_neg_int";
       
   528 val neg_zminus_int = thm "neg_zminus_int";
       
   529 val zadd = thm "zadd";
   984 val zadd = thm "zadd";
   530 val zminus_zadd_distrib = thm "zminus_zadd_distrib";
   985 val zminus_zadd_distrib = thm "zminus_zadd_distrib";
   531 val zadd_commute = thm "zadd_commute";
   986 val zadd_commute = thm "zadd_commute";
   532 val zadd_assoc = thm "zadd_assoc";
   987 val zadd_assoc = thm "zadd_assoc";
   533 val zadd_left_commute = thm "zadd_left_commute";
   988 val zadd_left_commute = thm "zadd_left_commute";
   543 val zadd_zminus_cancel = thm "zadd_zminus_cancel";
   998 val zadd_zminus_cancel = thm "zadd_zminus_cancel";
   544 val zminus_zadd_cancel = thm "zminus_zadd_cancel";
   999 val zminus_zadd_cancel = thm "zminus_zadd_cancel";
   545 val zdiff0 = thm "zdiff0";
  1000 val zdiff0 = thm "zdiff0";
   546 val zdiff0_right = thm "zdiff0_right";
  1001 val zdiff0_right = thm "zdiff0_right";
   547 val zdiff_self = thm "zdiff_self";
  1002 val zdiff_self = thm "zdiff_self";
   548 val zadd_assoc_cong = thm "zadd_assoc_cong";
       
   549 val zadd_assoc_swap = thm "zadd_assoc_swap";
       
   550 val zmult_congruent2 = thm "zmult_congruent2";
  1003 val zmult_congruent2 = thm "zmult_congruent2";
   551 val zmult = thm "zmult";
  1004 val zmult = thm "zmult";
   552 val zmult_zminus = thm "zmult_zminus";
  1005 val zmult_zminus = thm "zmult_zminus";
   553 val zmult_commute = thm "zmult_commute";
  1006 val zmult_commute = thm "zmult_commute";
   554 val zmult_assoc = thm "zmult_assoc";
  1007 val zmult_assoc = thm "zmult_assoc";
   562 val zmult_0 = thm "zmult_0";
  1015 val zmult_0 = thm "zmult_0";
   563 val zmult_1 = thm "zmult_1";
  1016 val zmult_1 = thm "zmult_1";
   564 val zmult_0_right = thm "zmult_0_right";
  1017 val zmult_0_right = thm "zmult_0_right";
   565 val zmult_1_right = thm "zmult_1_right";
  1018 val zmult_1_right = thm "zmult_1_right";
   566 val zless_iff_Suc_zadd = thm "zless_iff_Suc_zadd";
  1019 val zless_iff_Suc_zadd = thm "zless_iff_Suc_zadd";
   567 val zless_zadd_Suc = thm "zless_zadd_Suc";
       
   568 val zless_trans = thm "zless_trans";
       
   569 val zless_not_sym = thm "zless_not_sym";
       
   570 val zless_asym = thm "zless_asym";
       
   571 val zless_not_refl = thm "zless_not_refl";
       
   572 val zless_irrefl = thm "zless_irrefl";
       
   573 val zless_linear = thm "zless_linear";
       
   574 val int_neq_iff = thm "int_neq_iff";
       
   575 val int_neqE = thm "int_neqE";
       
   576 val int_int_eq = thm "int_int_eq";
  1020 val int_int_eq = thm "int_int_eq";
   577 val int_eq_0_conv = thm "int_eq_0_conv";
  1021 val int_eq_0_conv = thm "int_eq_0_conv";
   578 val zless_int = thm "zless_int";
  1022 val zless_int = thm "zless_int";
   579 val int_less_0_conv = thm "int_less_0_conv";
  1023 val int_less_0_conv = thm "int_less_0_conv";
   580 val zero_less_int_conv = thm "zero_less_int_conv";
  1024 val zero_less_int_conv = thm "zero_less_int_conv";
   581 val zle_int = thm "zle_int";
  1025 val zle_int = thm "zle_int";
   582 val zero_zle_int = thm "zero_zle_int";
  1026 val zero_zle_int = thm "zero_zle_int";
   583 val int_le_0_conv = thm "int_le_0_conv";
  1027 val int_le_0_conv = thm "int_le_0_conv";
   584 val zle_imp_zless_or_eq = thm "zle_imp_zless_or_eq";
       
   585 val zless_or_eq_imp_zle = thm "zless_or_eq_imp_zle";
       
   586 val int_le_less = thm "int_le_less";
       
   587 val zle_refl = thm "zle_refl";
  1028 val zle_refl = thm "zle_refl";
   588 val zle_linear = thm "zle_linear";
  1029 val zle_linear = thm "zle_linear";
   589 val zle_trans = thm "zle_trans";
  1030 val zle_trans = thm "zle_trans";
   590 val zle_anti_sym = thm "zle_anti_sym";
  1031 val zle_anti_sym = thm "zle_anti_sym";
   591 val int_less_le = thm "int_less_le";
  1032 
   592 val zadd_left_cancel = thm "zadd_left_cancel";
  1033 val Ints_def = thm "Ints_def";
       
  1034 val Nats_def = thm "Nats_def";
       
  1035 
       
  1036 val of_nat_0 = thm "of_nat_0";
       
  1037 val of_nat_Suc = thm "of_nat_Suc";
       
  1038 val of_nat_1 = thm "of_nat_1";
       
  1039 val of_nat_add = thm "of_nat_add";
       
  1040 val of_nat_mult = thm "of_nat_mult";
       
  1041 val zero_le_imp_of_nat = thm "zero_le_imp_of_nat";
       
  1042 val less_imp_of_nat_less = thm "less_imp_of_nat_less";
       
  1043 val of_nat_less_imp_less = thm "of_nat_less_imp_less";
       
  1044 val of_nat_less_iff = thm "of_nat_less_iff";
       
  1045 val of_nat_le_iff = thm "of_nat_le_iff";
       
  1046 val of_nat_eq_iff = thm "of_nat_eq_iff";
       
  1047 val Nats_0 = thm "Nats_0";
       
  1048 val Nats_1 = thm "Nats_1";
       
  1049 val Nats_add = thm "Nats_add";
       
  1050 val Nats_mult = thm "Nats_mult";
       
  1051 val of_int = thm "of_int";
       
  1052 val of_int_0 = thm "of_int_0";
       
  1053 val of_int_1 = thm "of_int_1";
       
  1054 val of_int_add = thm "of_int_add";
       
  1055 val of_int_minus = thm "of_int_minus";
       
  1056 val of_int_diff = thm "of_int_diff";
       
  1057 val of_int_mult = thm "of_int_mult";
       
  1058 val of_int_le_iff = thm "of_int_le_iff";
       
  1059 val of_int_less_iff = thm "of_int_less_iff";
       
  1060 val of_int_eq_iff = thm "of_int_eq_iff";
       
  1061 val Ints_0 = thm "Ints_0";
       
  1062 val Ints_1 = thm "Ints_1";
       
  1063 val Ints_add = thm "Ints_add";
       
  1064 val Ints_minus = thm "Ints_minus";
       
  1065 val Ints_diff = thm "Ints_diff";
       
  1066 val Ints_mult = thm "Ints_mult";
       
  1067 val of_int_of_nat_eq = thm"of_int_of_nat_eq";
       
  1068 val Ints_cases = thm "Ints_cases";
       
  1069 val Ints_induct = thm "Ints_induct";
   593 *}
  1070 *}
   594 
  1071 
   595 end
  1072 end