src/HOL/Algebra/Exact_Sequence.thy
changeset 81142 6ad2c917dd2e
parent 80914 d97fdabd9e2b
child 81438 95c9af7483b1
equal deleted inserted replaced
81141:3e3e7a68cd80 81142:6ad2c917dd2e
    20 inductive_simps exact_seq_end_iff [simp]: "exact_seq ([G,H], (g # q))"
    20 inductive_simps exact_seq_end_iff [simp]: "exact_seq ([G,H], (g # q))"
    21 inductive_simps exact_seq_cons_iff [simp]: "exact_seq ((G # K # H # l), (g # h # q))"
    21 inductive_simps exact_seq_cons_iff [simp]: "exact_seq ((G # K # H # l), (g # h # q))"
    22 
    22 
    23 abbreviation exact_seq_arrow ::
    23 abbreviation exact_seq_arrow ::
    24   "('a \<Rightarrow> 'a) \<Rightarrow> 'a monoid list \<times> ('a \<Rightarrow> 'a) list \<Rightarrow>  'a monoid \<Rightarrow> 'a monoid list \<times> ('a \<Rightarrow> 'a) list"
    24   "('a \<Rightarrow> 'a) \<Rightarrow> 'a monoid list \<times> ('a \<Rightarrow> 'a) list \<Rightarrow>  'a monoid \<Rightarrow> 'a monoid list \<times> ('a \<Rightarrow> 'a) list"
    25   (\<open>(3_ / \<longlongrightarrow>\<index> _)\<close> [1000, 60])
    25   (\<open>(\<open>indent=3 notation=\<open>mixfix exact_seq\<close>\<close>_ / \<longlongrightarrow>\<index> _)\<close> [1000, 60])
    26   where "exact_seq_arrow  f t G \<equiv> (G # (fst t), f # (snd t))"
    26   where "exact_seq_arrow  f t G \<equiv> (G # (fst t), f # (snd t))"
    27 
    27 
    28 
    28 
    29 subsection \<open>Basic Properties\<close>
    29 subsection \<open>Basic Properties\<close>
    30 
    30