src/HOL/Relation.thy
changeset 76637 6b75499e52d1
parent 76636 e772c8e6edd0
child 76639 e322abb912af
equal deleted inserted replaced
76636:e772c8e6edd0 76637:6b75499e52d1
   441 lemma antisymp_def[no_atp]: "antisymp R \<longleftrightarrow> (\<forall>x y. R x y \<longrightarrow> R y x \<longrightarrow> x = y)"
   441 lemma antisymp_def[no_atp]: "antisymp R \<longleftrightarrow> (\<forall>x y. R x y \<longrightarrow> R y x \<longrightarrow> x = y)"
   442   by (simp add: antisymp_on_def)
   442   by (simp add: antisymp_on_def)
   443 
   443 
   444 text \<open>@{thm [source] antisym_def} and @{thm [source] antisymp_def} are for backward compatibility.\<close>
   444 text \<open>@{thm [source] antisym_def} and @{thm [source] antisymp_def} are for backward compatibility.\<close>
   445 
   445 
   446 lemma antisymp_antisym_eq [pred_set_conv]: "antisymp (\<lambda>x y. (x, y) \<in> r) \<longleftrightarrow> antisym r"
   446 lemma antisymp_on_antisym_on_eq[pred_set_conv]:
   447   by (simp add: antisym_def antisymp_def)
   447   "antisymp_on A (\<lambda>x y. (x, y) \<in> r) \<longleftrightarrow> antisym_on A r"
       
   448   by (simp add: antisym_on_def antisymp_on_def)
       
   449 
       
   450 lemmas antisymp_antisym_eq = antisymp_on_antisym_on_eq[of UNIV]
   448 
   451 
   449 lemma antisymI [intro?]:
   452 lemma antisymI [intro?]:
   450   "(\<And>x y. (x, y) \<in> r \<Longrightarrow> (y, x) \<in> r \<Longrightarrow> x = y) \<Longrightarrow> antisym r"
   453   "(\<And>x y. (x, y) \<in> r \<Longrightarrow> (y, x) \<in> r \<Longrightarrow> x = y) \<Longrightarrow> antisym r"
   451   unfolding antisym_def by iprover
   454   unfolding antisym_def by iprover
   452 
   455