src/HOL/Real/HahnBanach/ZornLemma.thy
changeset 29197 6d4cb27ed19c
parent 29189 ee8572f3bb57
child 29198 418ed6411847
equal deleted inserted replaced
29189:ee8572f3bb57 29197:6d4cb27ed19c
     1 (*  Title:      HOL/Real/HahnBanach/ZornLemma.thy
       
     2     ID:         $Id$
       
     3     Author:     Gertrud Bauer, TU Munich
       
     4 *)
       
     5 
       
     6 header {* Zorn's Lemma *}
       
     7 
       
     8 theory ZornLemma
       
     9 imports Zorn
       
    10 begin
       
    11 
       
    12 text {*
       
    13   Zorn's Lemmas states: if every linear ordered subset of an ordered
       
    14   set @{text S} has an upper bound in @{text S}, then there exists a
       
    15   maximal element in @{text S}.  In our application, @{text S} is a
       
    16   set of sets ordered by set inclusion. Since the union of a chain of
       
    17   sets is an upper bound for all elements of the chain, the conditions
       
    18   of Zorn's lemma can be modified: if @{text S} is non-empty, it
       
    19   suffices to show that for every non-empty chain @{text c} in @{text
       
    20   S} the union of @{text c} also lies in @{text S}.
       
    21 *}
       
    22 
       
    23 theorem Zorn's_Lemma:
       
    24   assumes r: "\<And>c. c \<in> chain S \<Longrightarrow> \<exists>x. x \<in> c \<Longrightarrow> \<Union>c \<in> S"
       
    25     and aS: "a \<in> S"
       
    26   shows "\<exists>y \<in> S. \<forall>z \<in> S. y \<subseteq> z \<longrightarrow> y = z"
       
    27 proof (rule Zorn_Lemma2)
       
    28   show "\<forall>c \<in> chain S. \<exists>y \<in> S. \<forall>z \<in> c. z \<subseteq> y"
       
    29   proof
       
    30     fix c assume "c \<in> chain S"
       
    31     show "\<exists>y \<in> S. \<forall>z \<in> c. z \<subseteq> y"
       
    32     proof cases
       
    33 
       
    34       txt {* If @{text c} is an empty chain, then every element in
       
    35 	@{text S} is an upper bound of @{text c}. *}
       
    36 
       
    37       assume "c = {}"
       
    38       with aS show ?thesis by fast
       
    39 
       
    40       txt {* If @{text c} is non-empty, then @{text "\<Union>c"} is an upper
       
    41 	bound of @{text c}, lying in @{text S}. *}
       
    42 
       
    43     next
       
    44       assume "c \<noteq> {}"
       
    45       show ?thesis
       
    46       proof
       
    47         show "\<forall>z \<in> c. z \<subseteq> \<Union>c" by fast
       
    48         show "\<Union>c \<in> S"
       
    49         proof (rule r)
       
    50           from `c \<noteq> {}` show "\<exists>x. x \<in> c" by fast
       
    51 	  show "c \<in> chain S" by fact
       
    52         qed
       
    53       qed
       
    54     qed
       
    55   qed
       
    56 qed
       
    57 
       
    58 end