src/HOL/SEQ.thy
changeset 29197 6d4cb27ed19c
parent 28952 15a4b2cf8c34
child 29667 53103fc8ffa3
equal deleted inserted replaced
29189:ee8572f3bb57 29197:6d4cb27ed19c
       
     1 (*  Title       : SEQ.thy
       
     2     Author      : Jacques D. Fleuriot
       
     3     Copyright   : 1998  University of Cambridge
       
     4     Description : Convergence of sequences and series
       
     5     Conversion to Isar and new proofs by Lawrence C Paulson, 2004
       
     6     Additional contributions by Jeremy Avigad and Brian Huffman
       
     7 *)
       
     8 
       
     9 header {* Sequences and Convergence *}
       
    10 
       
    11 theory SEQ
       
    12 imports RealVector RComplete
       
    13 begin
       
    14 
       
    15 definition
       
    16   Zseq :: "[nat \<Rightarrow> 'a::real_normed_vector] \<Rightarrow> bool" where
       
    17     --{*Standard definition of sequence converging to zero*}
       
    18   [code del]: "Zseq X = (\<forall>r>0. \<exists>no. \<forall>n\<ge>no. norm (X n) < r)"
       
    19 
       
    20 definition
       
    21   LIMSEQ :: "[nat => 'a::real_normed_vector, 'a] => bool"
       
    22     ("((_)/ ----> (_))" [60, 60] 60) where
       
    23     --{*Standard definition of convergence of sequence*}
       
    24   [code del]: "X ----> L = (\<forall>r. 0 < r --> (\<exists>no. \<forall>n. no \<le> n --> norm (X n - L) < r))"
       
    25 
       
    26 definition
       
    27   lim :: "(nat => 'a::real_normed_vector) => 'a" where
       
    28     --{*Standard definition of limit using choice operator*}
       
    29   "lim X = (THE L. X ----> L)"
       
    30 
       
    31 definition
       
    32   convergent :: "(nat => 'a::real_normed_vector) => bool" where
       
    33     --{*Standard definition of convergence*}
       
    34   "convergent X = (\<exists>L. X ----> L)"
       
    35 
       
    36 definition
       
    37   Bseq :: "(nat => 'a::real_normed_vector) => bool" where
       
    38     --{*Standard definition for bounded sequence*}
       
    39   [code del]: "Bseq X = (\<exists>K>0.\<forall>n. norm (X n) \<le> K)"
       
    40 
       
    41 definition
       
    42   monoseq :: "(nat=>real)=>bool" where
       
    43     --{*Definition for monotonicity*}
       
    44   [code del]: "monoseq X = ((\<forall>m. \<forall>n\<ge>m. X m \<le> X n) | (\<forall>m. \<forall>n\<ge>m. X n \<le> X m))"
       
    45 
       
    46 definition
       
    47   subseq :: "(nat => nat) => bool" where
       
    48     --{*Definition of subsequence*}
       
    49   [code del]:   "subseq f = (\<forall>m. \<forall>n>m. (f m) < (f n))"
       
    50 
       
    51 definition
       
    52   Cauchy :: "(nat => 'a::real_normed_vector) => bool" where
       
    53     --{*Standard definition of the Cauchy condition*}
       
    54   [code del]: "Cauchy X = (\<forall>e>0. \<exists>M. \<forall>m \<ge> M. \<forall>n \<ge> M. norm (X m - X n) < e)"
       
    55 
       
    56 
       
    57 subsection {* Bounded Sequences *}
       
    58 
       
    59 lemma BseqI': assumes K: "\<And>n. norm (X n) \<le> K" shows "Bseq X"
       
    60 unfolding Bseq_def
       
    61 proof (intro exI conjI allI)
       
    62   show "0 < max K 1" by simp
       
    63 next
       
    64   fix n::nat
       
    65   have "norm (X n) \<le> K" by (rule K)
       
    66   thus "norm (X n) \<le> max K 1" by simp
       
    67 qed
       
    68 
       
    69 lemma BseqE: "\<lbrakk>Bseq X; \<And>K. \<lbrakk>0 < K; \<forall>n. norm (X n) \<le> K\<rbrakk> \<Longrightarrow> Q\<rbrakk> \<Longrightarrow> Q"
       
    70 unfolding Bseq_def by auto
       
    71 
       
    72 lemma BseqI2': assumes K: "\<forall>n\<ge>N. norm (X n) \<le> K" shows "Bseq X"
       
    73 proof (rule BseqI')
       
    74   let ?A = "norm ` X ` {..N}"
       
    75   have 1: "finite ?A" by simp
       
    76   fix n::nat
       
    77   show "norm (X n) \<le> max K (Max ?A)"
       
    78   proof (cases rule: linorder_le_cases)
       
    79     assume "n \<ge> N"
       
    80     hence "norm (X n) \<le> K" using K by simp
       
    81     thus "norm (X n) \<le> max K (Max ?A)" by simp
       
    82   next
       
    83     assume "n \<le> N"
       
    84     hence "norm (X n) \<in> ?A" by simp
       
    85     with 1 have "norm (X n) \<le> Max ?A" by (rule Max_ge)
       
    86     thus "norm (X n) \<le> max K (Max ?A)" by simp
       
    87   qed
       
    88 qed
       
    89 
       
    90 lemma Bseq_ignore_initial_segment: "Bseq X \<Longrightarrow> Bseq (\<lambda>n. X (n + k))"
       
    91 unfolding Bseq_def by auto
       
    92 
       
    93 lemma Bseq_offset: "Bseq (\<lambda>n. X (n + k)) \<Longrightarrow> Bseq X"
       
    94 apply (erule BseqE)
       
    95 apply (rule_tac N="k" and K="K" in BseqI2')
       
    96 apply clarify
       
    97 apply (drule_tac x="n - k" in spec, simp)
       
    98 done
       
    99 
       
   100 
       
   101 subsection {* Sequences That Converge to Zero *}
       
   102 
       
   103 lemma ZseqI:
       
   104   "(\<And>r. 0 < r \<Longrightarrow> \<exists>no. \<forall>n\<ge>no. norm (X n) < r) \<Longrightarrow> Zseq X"
       
   105 unfolding Zseq_def by simp
       
   106 
       
   107 lemma ZseqD:
       
   108   "\<lbrakk>Zseq X; 0 < r\<rbrakk> \<Longrightarrow> \<exists>no. \<forall>n\<ge>no. norm (X n) < r"
       
   109 unfolding Zseq_def by simp
       
   110 
       
   111 lemma Zseq_zero: "Zseq (\<lambda>n. 0)"
       
   112 unfolding Zseq_def by simp
       
   113 
       
   114 lemma Zseq_const_iff: "Zseq (\<lambda>n. k) = (k = 0)"
       
   115 unfolding Zseq_def by force
       
   116 
       
   117 lemma Zseq_norm_iff: "Zseq (\<lambda>n. norm (X n)) = Zseq (\<lambda>n. X n)"
       
   118 unfolding Zseq_def by simp
       
   119 
       
   120 lemma Zseq_imp_Zseq:
       
   121   assumes X: "Zseq X"
       
   122   assumes Y: "\<And>n. norm (Y n) \<le> norm (X n) * K"
       
   123   shows "Zseq (\<lambda>n. Y n)"
       
   124 proof (cases)
       
   125   assume K: "0 < K"
       
   126   show ?thesis
       
   127   proof (rule ZseqI)
       
   128     fix r::real assume "0 < r"
       
   129     hence "0 < r / K"
       
   130       using K by (rule divide_pos_pos)
       
   131     then obtain N where "\<forall>n\<ge>N. norm (X n) < r / K"
       
   132       using ZseqD [OF X] by fast
       
   133     hence "\<forall>n\<ge>N. norm (X n) * K < r"
       
   134       by (simp add: pos_less_divide_eq K)
       
   135     hence "\<forall>n\<ge>N. norm (Y n) < r"
       
   136       by (simp add: order_le_less_trans [OF Y])
       
   137     thus "\<exists>N. \<forall>n\<ge>N. norm (Y n) < r" ..
       
   138   qed
       
   139 next
       
   140   assume "\<not> 0 < K"
       
   141   hence K: "K \<le> 0" by (simp only: linorder_not_less)
       
   142   {
       
   143     fix n::nat
       
   144     have "norm (Y n) \<le> norm (X n) * K" by (rule Y)
       
   145     also have "\<dots> \<le> norm (X n) * 0"
       
   146       using K norm_ge_zero by (rule mult_left_mono)
       
   147     finally have "norm (Y n) = 0" by simp
       
   148   }
       
   149   thus ?thesis by (simp add: Zseq_zero)
       
   150 qed
       
   151 
       
   152 lemma Zseq_le: "\<lbrakk>Zseq Y; \<forall>n. norm (X n) \<le> norm (Y n)\<rbrakk> \<Longrightarrow> Zseq X"
       
   153 by (erule_tac K="1" in Zseq_imp_Zseq, simp)
       
   154 
       
   155 lemma Zseq_add:
       
   156   assumes X: "Zseq X"
       
   157   assumes Y: "Zseq Y"
       
   158   shows "Zseq (\<lambda>n. X n + Y n)"
       
   159 proof (rule ZseqI)
       
   160   fix r::real assume "0 < r"
       
   161   hence r: "0 < r / 2" by simp
       
   162   obtain M where M: "\<forall>n\<ge>M. norm (X n) < r/2"
       
   163     using ZseqD [OF X r] by fast
       
   164   obtain N where N: "\<forall>n\<ge>N. norm (Y n) < r/2"
       
   165     using ZseqD [OF Y r] by fast
       
   166   show "\<exists>N. \<forall>n\<ge>N. norm (X n + Y n) < r"
       
   167   proof (intro exI allI impI)
       
   168     fix n assume n: "max M N \<le> n"
       
   169     have "norm (X n + Y n) \<le> norm (X n) + norm (Y n)"
       
   170       by (rule norm_triangle_ineq)
       
   171     also have "\<dots> < r/2 + r/2"
       
   172     proof (rule add_strict_mono)
       
   173       from M n show "norm (X n) < r/2" by simp
       
   174       from N n show "norm (Y n) < r/2" by simp
       
   175     qed
       
   176     finally show "norm (X n + Y n) < r" by simp
       
   177   qed
       
   178 qed
       
   179 
       
   180 lemma Zseq_minus: "Zseq X \<Longrightarrow> Zseq (\<lambda>n. - X n)"
       
   181 unfolding Zseq_def by simp
       
   182 
       
   183 lemma Zseq_diff: "\<lbrakk>Zseq X; Zseq Y\<rbrakk> \<Longrightarrow> Zseq (\<lambda>n. X n - Y n)"
       
   184 by (simp only: diff_minus Zseq_add Zseq_minus)
       
   185 
       
   186 lemma (in bounded_linear) Zseq:
       
   187   assumes X: "Zseq X"
       
   188   shows "Zseq (\<lambda>n. f (X n))"
       
   189 proof -
       
   190   obtain K where "\<And>x. norm (f x) \<le> norm x * K"
       
   191     using bounded by fast
       
   192   with X show ?thesis
       
   193     by (rule Zseq_imp_Zseq)
       
   194 qed
       
   195 
       
   196 lemma (in bounded_bilinear) Zseq:
       
   197   assumes X: "Zseq X"
       
   198   assumes Y: "Zseq Y"
       
   199   shows "Zseq (\<lambda>n. X n ** Y n)"
       
   200 proof (rule ZseqI)
       
   201   fix r::real assume r: "0 < r"
       
   202   obtain K where K: "0 < K"
       
   203     and norm_le: "\<And>x y. norm (x ** y) \<le> norm x * norm y * K"
       
   204     using pos_bounded by fast
       
   205   from K have K': "0 < inverse K"
       
   206     by (rule positive_imp_inverse_positive)
       
   207   obtain M where M: "\<forall>n\<ge>M. norm (X n) < r"
       
   208     using ZseqD [OF X r] by fast
       
   209   obtain N where N: "\<forall>n\<ge>N. norm (Y n) < inverse K"
       
   210     using ZseqD [OF Y K'] by fast
       
   211   show "\<exists>N. \<forall>n\<ge>N. norm (X n ** Y n) < r"
       
   212   proof (intro exI allI impI)
       
   213     fix n assume n: "max M N \<le> n"
       
   214     have "norm (X n ** Y n) \<le> norm (X n) * norm (Y n) * K"
       
   215       by (rule norm_le)
       
   216     also have "norm (X n) * norm (Y n) * K < r * inverse K * K"
       
   217     proof (intro mult_strict_right_mono mult_strict_mono' norm_ge_zero K)
       
   218       from M n show Xn: "norm (X n) < r" by simp
       
   219       from N n show Yn: "norm (Y n) < inverse K" by simp
       
   220     qed
       
   221     also from K have "r * inverse K * K = r" by simp
       
   222     finally show "norm (X n ** Y n) < r" .
       
   223   qed
       
   224 qed
       
   225 
       
   226 lemma (in bounded_bilinear) Zseq_prod_Bseq:
       
   227   assumes X: "Zseq X"
       
   228   assumes Y: "Bseq Y"
       
   229   shows "Zseq (\<lambda>n. X n ** Y n)"
       
   230 proof -
       
   231   obtain K where K: "0 \<le> K"
       
   232     and norm_le: "\<And>x y. norm (x ** y) \<le> norm x * norm y * K"
       
   233     using nonneg_bounded by fast
       
   234   obtain B where B: "0 < B"
       
   235     and norm_Y: "\<And>n. norm (Y n) \<le> B"
       
   236     using Y [unfolded Bseq_def] by fast
       
   237   from X show ?thesis
       
   238   proof (rule Zseq_imp_Zseq)
       
   239     fix n::nat
       
   240     have "norm (X n ** Y n) \<le> norm (X n) * norm (Y n) * K"
       
   241       by (rule norm_le)
       
   242     also have "\<dots> \<le> norm (X n) * B * K"
       
   243       by (intro mult_mono' order_refl norm_Y norm_ge_zero
       
   244                 mult_nonneg_nonneg K)
       
   245     also have "\<dots> = norm (X n) * (B * K)"
       
   246       by (rule mult_assoc)
       
   247     finally show "norm (X n ** Y n) \<le> norm (X n) * (B * K)" .
       
   248   qed
       
   249 qed
       
   250 
       
   251 lemma (in bounded_bilinear) Bseq_prod_Zseq:
       
   252   assumes X: "Bseq X"
       
   253   assumes Y: "Zseq Y"
       
   254   shows "Zseq (\<lambda>n. X n ** Y n)"
       
   255 proof -
       
   256   obtain K where K: "0 \<le> K"
       
   257     and norm_le: "\<And>x y. norm (x ** y) \<le> norm x * norm y * K"
       
   258     using nonneg_bounded by fast
       
   259   obtain B where B: "0 < B"
       
   260     and norm_X: "\<And>n. norm (X n) \<le> B"
       
   261     using X [unfolded Bseq_def] by fast
       
   262   from Y show ?thesis
       
   263   proof (rule Zseq_imp_Zseq)
       
   264     fix n::nat
       
   265     have "norm (X n ** Y n) \<le> norm (X n) * norm (Y n) * K"
       
   266       by (rule norm_le)
       
   267     also have "\<dots> \<le> B * norm (Y n) * K"
       
   268       by (intro mult_mono' order_refl norm_X norm_ge_zero
       
   269                 mult_nonneg_nonneg K)
       
   270     also have "\<dots> = norm (Y n) * (B * K)"
       
   271       by (simp only: mult_ac)
       
   272     finally show "norm (X n ** Y n) \<le> norm (Y n) * (B * K)" .
       
   273   qed
       
   274 qed
       
   275 
       
   276 lemma (in bounded_bilinear) Zseq_left:
       
   277   "Zseq X \<Longrightarrow> Zseq (\<lambda>n. X n ** a)"
       
   278 by (rule bounded_linear_left [THEN bounded_linear.Zseq])
       
   279 
       
   280 lemma (in bounded_bilinear) Zseq_right:
       
   281   "Zseq X \<Longrightarrow> Zseq (\<lambda>n. a ** X n)"
       
   282 by (rule bounded_linear_right [THEN bounded_linear.Zseq])
       
   283 
       
   284 lemmas Zseq_mult = mult.Zseq
       
   285 lemmas Zseq_mult_right = mult.Zseq_right
       
   286 lemmas Zseq_mult_left = mult.Zseq_left
       
   287 
       
   288 
       
   289 subsection {* Limits of Sequences *}
       
   290 
       
   291 lemma LIMSEQ_iff:
       
   292       "(X ----> L) = (\<forall>r>0. \<exists>no. \<forall>n \<ge> no. norm (X n - L) < r)"
       
   293 by (rule LIMSEQ_def)
       
   294 
       
   295 lemma LIMSEQ_Zseq_iff: "((\<lambda>n. X n) ----> L) = Zseq (\<lambda>n. X n - L)"
       
   296 by (simp only: LIMSEQ_def Zseq_def)
       
   297 
       
   298 lemma LIMSEQ_I:
       
   299   "(\<And>r. 0 < r \<Longrightarrow> \<exists>no. \<forall>n\<ge>no. norm (X n - L) < r) \<Longrightarrow> X ----> L"
       
   300 by (simp add: LIMSEQ_def)
       
   301 
       
   302 lemma LIMSEQ_D:
       
   303   "\<lbrakk>X ----> L; 0 < r\<rbrakk> \<Longrightarrow> \<exists>no. \<forall>n\<ge>no. norm (X n - L) < r"
       
   304 by (simp add: LIMSEQ_def)
       
   305 
       
   306 lemma LIMSEQ_const: "(\<lambda>n. k) ----> k"
       
   307 by (simp add: LIMSEQ_def)
       
   308 
       
   309 lemma LIMSEQ_const_iff: "(\<lambda>n. k) ----> l = (k = l)"
       
   310 by (simp add: LIMSEQ_Zseq_iff Zseq_const_iff)
       
   311 
       
   312 lemma LIMSEQ_norm: "X ----> a \<Longrightarrow> (\<lambda>n. norm (X n)) ----> norm a"
       
   313 apply (simp add: LIMSEQ_def, safe)
       
   314 apply (drule_tac x="r" in spec, safe)
       
   315 apply (rule_tac x="no" in exI, safe)
       
   316 apply (drule_tac x="n" in spec, safe)
       
   317 apply (erule order_le_less_trans [OF norm_triangle_ineq3])
       
   318 done
       
   319 
       
   320 lemma LIMSEQ_ignore_initial_segment:
       
   321   "f ----> a \<Longrightarrow> (\<lambda>n. f (n + k)) ----> a"
       
   322 apply (rule LIMSEQ_I)
       
   323 apply (drule (1) LIMSEQ_D)
       
   324 apply (erule exE, rename_tac N)
       
   325 apply (rule_tac x=N in exI)
       
   326 apply simp
       
   327 done
       
   328 
       
   329 lemma LIMSEQ_offset:
       
   330   "(\<lambda>n. f (n + k)) ----> a \<Longrightarrow> f ----> a"
       
   331 apply (rule LIMSEQ_I)
       
   332 apply (drule (1) LIMSEQ_D)
       
   333 apply (erule exE, rename_tac N)
       
   334 apply (rule_tac x="N + k" in exI)
       
   335 apply clarify
       
   336 apply (drule_tac x="n - k" in spec)
       
   337 apply (simp add: le_diff_conv2)
       
   338 done
       
   339 
       
   340 lemma LIMSEQ_Suc: "f ----> l \<Longrightarrow> (\<lambda>n. f (Suc n)) ----> l"
       
   341 by (drule_tac k="1" in LIMSEQ_ignore_initial_segment, simp)
       
   342 
       
   343 lemma LIMSEQ_imp_Suc: "(\<lambda>n. f (Suc n)) ----> l \<Longrightarrow> f ----> l"
       
   344 by (rule_tac k="1" in LIMSEQ_offset, simp)
       
   345 
       
   346 lemma LIMSEQ_Suc_iff: "(\<lambda>n. f (Suc n)) ----> l = f ----> l"
       
   347 by (blast intro: LIMSEQ_imp_Suc LIMSEQ_Suc)
       
   348 
       
   349 lemma add_diff_add:
       
   350   fixes a b c d :: "'a::ab_group_add"
       
   351   shows "(a + c) - (b + d) = (a - b) + (c - d)"
       
   352 by simp
       
   353 
       
   354 lemma minus_diff_minus:
       
   355   fixes a b :: "'a::ab_group_add"
       
   356   shows "(- a) - (- b) = - (a - b)"
       
   357 by simp
       
   358 
       
   359 lemma LIMSEQ_add: "\<lbrakk>X ----> a; Y ----> b\<rbrakk> \<Longrightarrow> (\<lambda>n. X n + Y n) ----> a + b"
       
   360 by (simp only: LIMSEQ_Zseq_iff add_diff_add Zseq_add)
       
   361 
       
   362 lemma LIMSEQ_minus: "X ----> a \<Longrightarrow> (\<lambda>n. - X n) ----> - a"
       
   363 by (simp only: LIMSEQ_Zseq_iff minus_diff_minus Zseq_minus)
       
   364 
       
   365 lemma LIMSEQ_minus_cancel: "(\<lambda>n. - X n) ----> - a \<Longrightarrow> X ----> a"
       
   366 by (drule LIMSEQ_minus, simp)
       
   367 
       
   368 lemma LIMSEQ_diff: "\<lbrakk>X ----> a; Y ----> b\<rbrakk> \<Longrightarrow> (\<lambda>n. X n - Y n) ----> a - b"
       
   369 by (simp add: diff_minus LIMSEQ_add LIMSEQ_minus)
       
   370 
       
   371 lemma LIMSEQ_unique: "\<lbrakk>X ----> a; X ----> b\<rbrakk> \<Longrightarrow> a = b"
       
   372 by (drule (1) LIMSEQ_diff, simp add: LIMSEQ_const_iff)
       
   373 
       
   374 lemma (in bounded_linear) LIMSEQ:
       
   375   "X ----> a \<Longrightarrow> (\<lambda>n. f (X n)) ----> f a"
       
   376 by (simp only: LIMSEQ_Zseq_iff diff [symmetric] Zseq)
       
   377 
       
   378 lemma (in bounded_bilinear) LIMSEQ:
       
   379   "\<lbrakk>X ----> a; Y ----> b\<rbrakk> \<Longrightarrow> (\<lambda>n. X n ** Y n) ----> a ** b"
       
   380 by (simp only: LIMSEQ_Zseq_iff prod_diff_prod
       
   381                Zseq_add Zseq Zseq_left Zseq_right)
       
   382 
       
   383 lemma LIMSEQ_mult:
       
   384   fixes a b :: "'a::real_normed_algebra"
       
   385   shows "[| X ----> a; Y ----> b |] ==> (%n. X n * Y n) ----> a * b"
       
   386 by (rule mult.LIMSEQ)
       
   387 
       
   388 lemma inverse_diff_inverse:
       
   389   "\<lbrakk>(a::'a::division_ring) \<noteq> 0; b \<noteq> 0\<rbrakk>
       
   390    \<Longrightarrow> inverse a - inverse b = - (inverse a * (a - b) * inverse b)"
       
   391 by (simp add: ring_simps)
       
   392 
       
   393 lemma Bseq_inverse_lemma:
       
   394   fixes x :: "'a::real_normed_div_algebra"
       
   395   shows "\<lbrakk>r \<le> norm x; 0 < r\<rbrakk> \<Longrightarrow> norm (inverse x) \<le> inverse r"
       
   396 apply (subst nonzero_norm_inverse, clarsimp)
       
   397 apply (erule (1) le_imp_inverse_le)
       
   398 done
       
   399 
       
   400 lemma Bseq_inverse:
       
   401   fixes a :: "'a::real_normed_div_algebra"
       
   402   assumes X: "X ----> a"
       
   403   assumes a: "a \<noteq> 0"
       
   404   shows "Bseq (\<lambda>n. inverse (X n))"
       
   405 proof -
       
   406   from a have "0 < norm a" by simp
       
   407   hence "\<exists>r>0. r < norm a" by (rule dense)
       
   408   then obtain r where r1: "0 < r" and r2: "r < norm a" by fast
       
   409   obtain N where N: "\<And>n. N \<le> n \<Longrightarrow> norm (X n - a) < r"
       
   410     using LIMSEQ_D [OF X r1] by fast
       
   411   show ?thesis
       
   412   proof (rule BseqI2' [rule_format])
       
   413     fix n assume n: "N \<le> n"
       
   414     hence 1: "norm (X n - a) < r" by (rule N)
       
   415     hence 2: "X n \<noteq> 0" using r2 by auto
       
   416     hence "norm (inverse (X n)) = inverse (norm (X n))"
       
   417       by (rule nonzero_norm_inverse)
       
   418     also have "\<dots> \<le> inverse (norm a - r)"
       
   419     proof (rule le_imp_inverse_le)
       
   420       show "0 < norm a - r" using r2 by simp
       
   421     next
       
   422       have "norm a - norm (X n) \<le> norm (a - X n)"
       
   423         by (rule norm_triangle_ineq2)
       
   424       also have "\<dots> = norm (X n - a)"
       
   425         by (rule norm_minus_commute)
       
   426       also have "\<dots> < r" using 1 .
       
   427       finally show "norm a - r \<le> norm (X n)" by simp
       
   428     qed
       
   429     finally show "norm (inverse (X n)) \<le> inverse (norm a - r)" .
       
   430   qed
       
   431 qed
       
   432 
       
   433 lemma LIMSEQ_inverse_lemma:
       
   434   fixes a :: "'a::real_normed_div_algebra"
       
   435   shows "\<lbrakk>X ----> a; a \<noteq> 0; \<forall>n. X n \<noteq> 0\<rbrakk>
       
   436          \<Longrightarrow> (\<lambda>n. inverse (X n)) ----> inverse a"
       
   437 apply (subst LIMSEQ_Zseq_iff)
       
   438 apply (simp add: inverse_diff_inverse nonzero_imp_inverse_nonzero)
       
   439 apply (rule Zseq_minus)
       
   440 apply (rule Zseq_mult_left)
       
   441 apply (rule mult.Bseq_prod_Zseq)
       
   442 apply (erule (1) Bseq_inverse)
       
   443 apply (simp add: LIMSEQ_Zseq_iff)
       
   444 done
       
   445 
       
   446 lemma LIMSEQ_inverse:
       
   447   fixes a :: "'a::real_normed_div_algebra"
       
   448   assumes X: "X ----> a"
       
   449   assumes a: "a \<noteq> 0"
       
   450   shows "(\<lambda>n. inverse (X n)) ----> inverse a"
       
   451 proof -
       
   452   from a have "0 < norm a" by simp
       
   453   then obtain k where "\<forall>n\<ge>k. norm (X n - a) < norm a"
       
   454     using LIMSEQ_D [OF X] by fast
       
   455   hence "\<forall>n\<ge>k. X n \<noteq> 0" by auto
       
   456   hence k: "\<forall>n. X (n + k) \<noteq> 0" by simp
       
   457 
       
   458   from X have "(\<lambda>n. X (n + k)) ----> a"
       
   459     by (rule LIMSEQ_ignore_initial_segment)
       
   460   hence "(\<lambda>n. inverse (X (n + k))) ----> inverse a"
       
   461     using a k by (rule LIMSEQ_inverse_lemma)
       
   462   thus "(\<lambda>n. inverse (X n)) ----> inverse a"
       
   463     by (rule LIMSEQ_offset)
       
   464 qed
       
   465 
       
   466 lemma LIMSEQ_divide:
       
   467   fixes a b :: "'a::real_normed_field"
       
   468   shows "\<lbrakk>X ----> a; Y ----> b; b \<noteq> 0\<rbrakk> \<Longrightarrow> (\<lambda>n. X n / Y n) ----> a / b"
       
   469 by (simp add: LIMSEQ_mult LIMSEQ_inverse divide_inverse)
       
   470 
       
   471 lemma LIMSEQ_pow:
       
   472   fixes a :: "'a::{real_normed_algebra,recpower}"
       
   473   shows "X ----> a \<Longrightarrow> (\<lambda>n. (X n) ^ m) ----> a ^ m"
       
   474 by (induct m) (simp_all add: power_Suc LIMSEQ_const LIMSEQ_mult)
       
   475 
       
   476 lemma LIMSEQ_setsum:
       
   477   assumes n: "\<And>n. n \<in> S \<Longrightarrow> X n ----> L n"
       
   478   shows "(\<lambda>m. \<Sum>n\<in>S. X n m) ----> (\<Sum>n\<in>S. L n)"
       
   479 proof (cases "finite S")
       
   480   case True
       
   481   thus ?thesis using n
       
   482   proof (induct)
       
   483     case empty
       
   484     show ?case
       
   485       by (simp add: LIMSEQ_const)
       
   486   next
       
   487     case insert
       
   488     thus ?case
       
   489       by (simp add: LIMSEQ_add)
       
   490   qed
       
   491 next
       
   492   case False
       
   493   thus ?thesis
       
   494     by (simp add: LIMSEQ_const)
       
   495 qed
       
   496 
       
   497 lemma LIMSEQ_setprod:
       
   498   fixes L :: "'a \<Rightarrow> 'b::{real_normed_algebra,comm_ring_1}"
       
   499   assumes n: "\<And>n. n \<in> S \<Longrightarrow> X n ----> L n"
       
   500   shows "(\<lambda>m. \<Prod>n\<in>S. X n m) ----> (\<Prod>n\<in>S. L n)"
       
   501 proof (cases "finite S")
       
   502   case True
       
   503   thus ?thesis using n
       
   504   proof (induct)
       
   505     case empty
       
   506     show ?case
       
   507       by (simp add: LIMSEQ_const)
       
   508   next
       
   509     case insert
       
   510     thus ?case
       
   511       by (simp add: LIMSEQ_mult)
       
   512   qed
       
   513 next
       
   514   case False
       
   515   thus ?thesis
       
   516     by (simp add: setprod_def LIMSEQ_const)
       
   517 qed
       
   518 
       
   519 lemma LIMSEQ_add_const: "f ----> a ==> (%n.(f n + b)) ----> a + b"
       
   520 by (simp add: LIMSEQ_add LIMSEQ_const)
       
   521 
       
   522 (* FIXME: delete *)
       
   523 lemma LIMSEQ_add_minus:
       
   524      "[| X ----> a; Y ----> b |] ==> (%n. X n + -Y n) ----> a + -b"
       
   525 by (simp only: LIMSEQ_add LIMSEQ_minus)
       
   526 
       
   527 lemma LIMSEQ_diff_const: "f ----> a ==> (%n.(f n  - b)) ----> a - b"
       
   528 by (simp add: LIMSEQ_diff LIMSEQ_const)
       
   529 
       
   530 lemma LIMSEQ_diff_approach_zero: 
       
   531   "g ----> L ==> (%x. f x - g x) ----> 0  ==>
       
   532      f ----> L"
       
   533   apply (drule LIMSEQ_add)
       
   534   apply assumption
       
   535   apply simp
       
   536 done
       
   537 
       
   538 lemma LIMSEQ_diff_approach_zero2: 
       
   539   "f ----> L ==> (%x. f x - g x) ----> 0  ==>
       
   540      g ----> L";
       
   541   apply (drule LIMSEQ_diff)
       
   542   apply assumption
       
   543   apply simp
       
   544 done
       
   545 
       
   546 text{*A sequence tends to zero iff its abs does*}
       
   547 lemma LIMSEQ_norm_zero: "((\<lambda>n. norm (X n)) ----> 0) = (X ----> 0)"
       
   548 by (simp add: LIMSEQ_def)
       
   549 
       
   550 lemma LIMSEQ_rabs_zero: "((%n. \<bar>f n\<bar>) ----> 0) = (f ----> (0::real))"
       
   551 by (simp add: LIMSEQ_def)
       
   552 
       
   553 lemma LIMSEQ_imp_rabs: "f ----> (l::real) ==> (%n. \<bar>f n\<bar>) ----> \<bar>l\<bar>"
       
   554 by (drule LIMSEQ_norm, simp)
       
   555 
       
   556 text{*An unbounded sequence's inverse tends to 0*}
       
   557 
       
   558 lemma LIMSEQ_inverse_zero:
       
   559   "\<forall>r::real. \<exists>N. \<forall>n\<ge>N. r < X n \<Longrightarrow> (\<lambda>n. inverse (X n)) ----> 0"
       
   560 apply (rule LIMSEQ_I)
       
   561 apply (drule_tac x="inverse r" in spec, safe)
       
   562 apply (rule_tac x="N" in exI, safe)
       
   563 apply (drule_tac x="n" in spec, safe)
       
   564 apply (frule positive_imp_inverse_positive)
       
   565 apply (frule (1) less_imp_inverse_less)
       
   566 apply (subgoal_tac "0 < X n", simp)
       
   567 apply (erule (1) order_less_trans)
       
   568 done
       
   569 
       
   570 text{*The sequence @{term "1/n"} tends to 0 as @{term n} tends to infinity*}
       
   571 
       
   572 lemma LIMSEQ_inverse_real_of_nat: "(%n. inverse(real(Suc n))) ----> 0"
       
   573 apply (rule LIMSEQ_inverse_zero, safe)
       
   574 apply (cut_tac x = r in reals_Archimedean2)
       
   575 apply (safe, rule_tac x = n in exI)
       
   576 apply (auto simp add: real_of_nat_Suc)
       
   577 done
       
   578 
       
   579 text{*The sequence @{term "r + 1/n"} tends to @{term r} as @{term n} tends to
       
   580 infinity is now easily proved*}
       
   581 
       
   582 lemma LIMSEQ_inverse_real_of_nat_add:
       
   583      "(%n. r + inverse(real(Suc n))) ----> r"
       
   584 by (cut_tac LIMSEQ_add [OF LIMSEQ_const LIMSEQ_inverse_real_of_nat], auto)
       
   585 
       
   586 lemma LIMSEQ_inverse_real_of_nat_add_minus:
       
   587      "(%n. r + -inverse(real(Suc n))) ----> r"
       
   588 by (cut_tac LIMSEQ_add_minus [OF LIMSEQ_const LIMSEQ_inverse_real_of_nat], auto)
       
   589 
       
   590 lemma LIMSEQ_inverse_real_of_nat_add_minus_mult:
       
   591      "(%n. r*( 1 + -inverse(real(Suc n)))) ----> r"
       
   592 by (cut_tac b=1 in
       
   593         LIMSEQ_mult [OF LIMSEQ_const LIMSEQ_inverse_real_of_nat_add_minus], auto)
       
   594 
       
   595 lemma LIMSEQ_le_const:
       
   596   "\<lbrakk>X ----> (x::real); \<exists>N. \<forall>n\<ge>N. a \<le> X n\<rbrakk> \<Longrightarrow> a \<le> x"
       
   597 apply (rule ccontr, simp only: linorder_not_le)
       
   598 apply (drule_tac r="a - x" in LIMSEQ_D, simp)
       
   599 apply clarsimp
       
   600 apply (drule_tac x="max N no" in spec, drule mp, rule le_maxI1)
       
   601 apply (drule_tac x="max N no" in spec, drule mp, rule le_maxI2)
       
   602 apply simp
       
   603 done
       
   604 
       
   605 lemma LIMSEQ_le_const2:
       
   606   "\<lbrakk>X ----> (x::real); \<exists>N. \<forall>n\<ge>N. X n \<le> a\<rbrakk> \<Longrightarrow> x \<le> a"
       
   607 apply (subgoal_tac "- a \<le> - x", simp)
       
   608 apply (rule LIMSEQ_le_const)
       
   609 apply (erule LIMSEQ_minus)
       
   610 apply simp
       
   611 done
       
   612 
       
   613 lemma LIMSEQ_le:
       
   614   "\<lbrakk>X ----> x; Y ----> y; \<exists>N. \<forall>n\<ge>N. X n \<le> Y n\<rbrakk> \<Longrightarrow> x \<le> (y::real)"
       
   615 apply (subgoal_tac "0 \<le> y - x", simp)
       
   616 apply (rule LIMSEQ_le_const)
       
   617 apply (erule (1) LIMSEQ_diff)
       
   618 apply (simp add: le_diff_eq)
       
   619 done
       
   620 
       
   621 
       
   622 subsection {* Convergence *}
       
   623 
       
   624 lemma limI: "X ----> L ==> lim X = L"
       
   625 apply (simp add: lim_def)
       
   626 apply (blast intro: LIMSEQ_unique)
       
   627 done
       
   628 
       
   629 lemma convergentD: "convergent X ==> \<exists>L. (X ----> L)"
       
   630 by (simp add: convergent_def)
       
   631 
       
   632 lemma convergentI: "(X ----> L) ==> convergent X"
       
   633 by (auto simp add: convergent_def)
       
   634 
       
   635 lemma convergent_LIMSEQ_iff: "convergent X = (X ----> lim X)"
       
   636 by (auto intro: theI LIMSEQ_unique simp add: convergent_def lim_def)
       
   637 
       
   638 lemma convergent_minus_iff: "(convergent X) = (convergent (%n. -(X n)))"
       
   639 apply (simp add: convergent_def)
       
   640 apply (auto dest: LIMSEQ_minus)
       
   641 apply (drule LIMSEQ_minus, auto)
       
   642 done
       
   643 
       
   644 
       
   645 subsection {* Bounded Monotonic Sequences *}
       
   646 
       
   647 text{*Subsequence (alternative definition, (e.g. Hoskins)*}
       
   648 
       
   649 lemma subseq_Suc_iff: "subseq f = (\<forall>n. (f n) < (f (Suc n)))"
       
   650 apply (simp add: subseq_def)
       
   651 apply (auto dest!: less_imp_Suc_add)
       
   652 apply (induct_tac k)
       
   653 apply (auto intro: less_trans)
       
   654 done
       
   655 
       
   656 lemma monoseq_Suc:
       
   657    "monoseq X = ((\<forall>n. X n \<le> X (Suc n))
       
   658                  | (\<forall>n. X (Suc n) \<le> X n))"
       
   659 apply (simp add: monoseq_def)
       
   660 apply (auto dest!: le_imp_less_or_eq)
       
   661 apply (auto intro!: lessI [THEN less_imp_le] dest!: less_imp_Suc_add)
       
   662 apply (induct_tac "ka")
       
   663 apply (auto intro: order_trans)
       
   664 apply (erule contrapos_np)
       
   665 apply (induct_tac "k")
       
   666 apply (auto intro: order_trans)
       
   667 done
       
   668 
       
   669 lemma monoI1: "\<forall>m. \<forall> n \<ge> m. X m \<le> X n ==> monoseq X"
       
   670 by (simp add: monoseq_def)
       
   671 
       
   672 lemma monoI2: "\<forall>m. \<forall> n \<ge> m. X n \<le> X m ==> monoseq X"
       
   673 by (simp add: monoseq_def)
       
   674 
       
   675 lemma mono_SucI1: "\<forall>n. X n \<le> X (Suc n) ==> monoseq X"
       
   676 by (simp add: monoseq_Suc)
       
   677 
       
   678 lemma mono_SucI2: "\<forall>n. X (Suc n) \<le> X n ==> monoseq X"
       
   679 by (simp add: monoseq_Suc)
       
   680 
       
   681 text{*Bounded Sequence*}
       
   682 
       
   683 lemma BseqD: "Bseq X ==> \<exists>K. 0 < K & (\<forall>n. norm (X n) \<le> K)"
       
   684 by (simp add: Bseq_def)
       
   685 
       
   686 lemma BseqI: "[| 0 < K; \<forall>n. norm (X n) \<le> K |] ==> Bseq X"
       
   687 by (auto simp add: Bseq_def)
       
   688 
       
   689 lemma lemma_NBseq_def:
       
   690      "(\<exists>K > 0. \<forall>n. norm (X n) \<le> K) =
       
   691       (\<exists>N. \<forall>n. norm (X n) \<le> real(Suc N))"
       
   692 apply auto
       
   693  prefer 2 apply force
       
   694 apply (cut_tac x = K in reals_Archimedean2, clarify)
       
   695 apply (rule_tac x = n in exI, clarify)
       
   696 apply (drule_tac x = na in spec)
       
   697 apply (auto simp add: real_of_nat_Suc)
       
   698 done
       
   699 
       
   700 text{* alternative definition for Bseq *}
       
   701 lemma Bseq_iff: "Bseq X = (\<exists>N. \<forall>n. norm (X n) \<le> real(Suc N))"
       
   702 apply (simp add: Bseq_def)
       
   703 apply (simp (no_asm) add: lemma_NBseq_def)
       
   704 done
       
   705 
       
   706 lemma lemma_NBseq_def2:
       
   707      "(\<exists>K > 0. \<forall>n. norm (X n) \<le> K) = (\<exists>N. \<forall>n. norm (X n) < real(Suc N))"
       
   708 apply (subst lemma_NBseq_def, auto)
       
   709 apply (rule_tac x = "Suc N" in exI)
       
   710 apply (rule_tac [2] x = N in exI)
       
   711 apply (auto simp add: real_of_nat_Suc)
       
   712  prefer 2 apply (blast intro: order_less_imp_le)
       
   713 apply (drule_tac x = n in spec, simp)
       
   714 done
       
   715 
       
   716 (* yet another definition for Bseq *)
       
   717 lemma Bseq_iff1a: "Bseq X = (\<exists>N. \<forall>n. norm (X n) < real(Suc N))"
       
   718 by (simp add: Bseq_def lemma_NBseq_def2)
       
   719 
       
   720 subsubsection{*Upper Bounds and Lubs of Bounded Sequences*}
       
   721 
       
   722 lemma Bseq_isUb:
       
   723   "!!(X::nat=>real). Bseq X ==> \<exists>U. isUb (UNIV::real set) {x. \<exists>n. X n = x} U"
       
   724 by (auto intro: isUbI setleI simp add: Bseq_def abs_le_iff)
       
   725 
       
   726 
       
   727 text{* Use completeness of reals (supremum property)
       
   728    to show that any bounded sequence has a least upper bound*}
       
   729 
       
   730 lemma Bseq_isLub:
       
   731   "!!(X::nat=>real). Bseq X ==>
       
   732    \<exists>U. isLub (UNIV::real set) {x. \<exists>n. X n = x} U"
       
   733 by (blast intro: reals_complete Bseq_isUb)
       
   734 
       
   735 subsubsection{*A Bounded and Monotonic Sequence Converges*}
       
   736 
       
   737 lemma lemma_converg1:
       
   738      "!!(X::nat=>real). [| \<forall>m. \<forall> n \<ge> m. X m \<le> X n;
       
   739                   isLub (UNIV::real set) {x. \<exists>n. X n = x} (X ma)
       
   740                |] ==> \<forall>n \<ge> ma. X n = X ma"
       
   741 apply safe
       
   742 apply (drule_tac y = "X n" in isLubD2)
       
   743 apply (blast dest: order_antisym)+
       
   744 done
       
   745 
       
   746 text{* The best of both worlds: Easier to prove this result as a standard
       
   747    theorem and then use equivalence to "transfer" it into the
       
   748    equivalent nonstandard form if needed!*}
       
   749 
       
   750 lemma Bmonoseq_LIMSEQ: "\<forall>n. m \<le> n --> X n = X m ==> \<exists>L. (X ----> L)"
       
   751 apply (simp add: LIMSEQ_def)
       
   752 apply (rule_tac x = "X m" in exI, safe)
       
   753 apply (rule_tac x = m in exI, safe)
       
   754 apply (drule spec, erule impE, auto)
       
   755 done
       
   756 
       
   757 lemma lemma_converg2:
       
   758    "!!(X::nat=>real).
       
   759     [| \<forall>m. X m ~= U;  isLub UNIV {x. \<exists>n. X n = x} U |] ==> \<forall>m. X m < U"
       
   760 apply safe
       
   761 apply (drule_tac y = "X m" in isLubD2)
       
   762 apply (auto dest!: order_le_imp_less_or_eq)
       
   763 done
       
   764 
       
   765 lemma lemma_converg3: "!!(X ::nat=>real). \<forall>m. X m \<le> U ==> isUb UNIV {x. \<exists>n. X n = x} U"
       
   766 by (rule setleI [THEN isUbI], auto)
       
   767 
       
   768 text{* FIXME: @{term "U - T < U"} is redundant *}
       
   769 lemma lemma_converg4: "!!(X::nat=> real).
       
   770                [| \<forall>m. X m ~= U;
       
   771                   isLub UNIV {x. \<exists>n. X n = x} U;
       
   772                   0 < T;
       
   773                   U + - T < U
       
   774                |] ==> \<exists>m. U + -T < X m & X m < U"
       
   775 apply (drule lemma_converg2, assumption)
       
   776 apply (rule ccontr, simp)
       
   777 apply (simp add: linorder_not_less)
       
   778 apply (drule lemma_converg3)
       
   779 apply (drule isLub_le_isUb, assumption)
       
   780 apply (auto dest: order_less_le_trans)
       
   781 done
       
   782 
       
   783 text{*A standard proof of the theorem for monotone increasing sequence*}
       
   784 
       
   785 lemma Bseq_mono_convergent:
       
   786      "[| Bseq X; \<forall>m. \<forall>n \<ge> m. X m \<le> X n |] ==> convergent (X::nat=>real)"
       
   787 apply (simp add: convergent_def)
       
   788 apply (frule Bseq_isLub, safe)
       
   789 apply (case_tac "\<exists>m. X m = U", auto)
       
   790 apply (blast dest: lemma_converg1 Bmonoseq_LIMSEQ)
       
   791 (* second case *)
       
   792 apply (rule_tac x = U in exI)
       
   793 apply (subst LIMSEQ_iff, safe)
       
   794 apply (frule lemma_converg2, assumption)
       
   795 apply (drule lemma_converg4, auto)
       
   796 apply (rule_tac x = m in exI, safe)
       
   797 apply (subgoal_tac "X m \<le> X n")
       
   798  prefer 2 apply blast
       
   799 apply (drule_tac x=n and P="%m. X m < U" in spec, arith)
       
   800 done
       
   801 
       
   802 lemma Bseq_minus_iff: "Bseq (%n. -(X n)) = Bseq X"
       
   803 by (simp add: Bseq_def)
       
   804 
       
   805 text{*Main monotonicity theorem*}
       
   806 lemma Bseq_monoseq_convergent: "[| Bseq X; monoseq X |] ==> convergent X"
       
   807 apply (simp add: monoseq_def, safe)
       
   808 apply (rule_tac [2] convergent_minus_iff [THEN ssubst])
       
   809 apply (drule_tac [2] Bseq_minus_iff [THEN ssubst])
       
   810 apply (auto intro!: Bseq_mono_convergent)
       
   811 done
       
   812 
       
   813 subsubsection{*A Few More Equivalence Theorems for Boundedness*}
       
   814 
       
   815 text{*alternative formulation for boundedness*}
       
   816 lemma Bseq_iff2: "Bseq X = (\<exists>k > 0. \<exists>x. \<forall>n. norm (X(n) + -x) \<le> k)"
       
   817 apply (unfold Bseq_def, safe)
       
   818 apply (rule_tac [2] x = "k + norm x" in exI)
       
   819 apply (rule_tac x = K in exI, simp)
       
   820 apply (rule exI [where x = 0], auto)
       
   821 apply (erule order_less_le_trans, simp)
       
   822 apply (drule_tac x=n in spec, fold diff_def)
       
   823 apply (drule order_trans [OF norm_triangle_ineq2])
       
   824 apply simp
       
   825 done
       
   826 
       
   827 text{*alternative formulation for boundedness*}
       
   828 lemma Bseq_iff3: "Bseq X = (\<exists>k > 0. \<exists>N. \<forall>n. norm(X(n) + -X(N)) \<le> k)"
       
   829 apply safe
       
   830 apply (simp add: Bseq_def, safe)
       
   831 apply (rule_tac x = "K + norm (X N)" in exI)
       
   832 apply auto
       
   833 apply (erule order_less_le_trans, simp)
       
   834 apply (rule_tac x = N in exI, safe)
       
   835 apply (drule_tac x = n in spec)
       
   836 apply (rule order_trans [OF norm_triangle_ineq], simp)
       
   837 apply (auto simp add: Bseq_iff2)
       
   838 done
       
   839 
       
   840 lemma BseqI2: "(\<forall>n. k \<le> f n & f n \<le> (K::real)) ==> Bseq f"
       
   841 apply (simp add: Bseq_def)
       
   842 apply (rule_tac x = " (\<bar>k\<bar> + \<bar>K\<bar>) + 1" in exI, auto)
       
   843 apply (drule_tac x = n in spec, arith)
       
   844 done
       
   845 
       
   846 
       
   847 subsection {* Cauchy Sequences *}
       
   848 
       
   849 lemma CauchyI:
       
   850   "(\<And>e. 0 < e \<Longrightarrow> \<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. norm (X m - X n) < e) \<Longrightarrow> Cauchy X"
       
   851 by (simp add: Cauchy_def)
       
   852 
       
   853 lemma CauchyD:
       
   854   "\<lbrakk>Cauchy X; 0 < e\<rbrakk> \<Longrightarrow> \<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. norm (X m - X n) < e"
       
   855 by (simp add: Cauchy_def)
       
   856 
       
   857 subsubsection {* Cauchy Sequences are Bounded *}
       
   858 
       
   859 text{*A Cauchy sequence is bounded -- this is the standard
       
   860   proof mechanization rather than the nonstandard proof*}
       
   861 
       
   862 lemma lemmaCauchy: "\<forall>n \<ge> M. norm (X M - X n) < (1::real)
       
   863           ==>  \<forall>n \<ge> M. norm (X n :: 'a::real_normed_vector) < 1 + norm (X M)"
       
   864 apply (clarify, drule spec, drule (1) mp)
       
   865 apply (simp only: norm_minus_commute)
       
   866 apply (drule order_le_less_trans [OF norm_triangle_ineq2])
       
   867 apply simp
       
   868 done
       
   869 
       
   870 lemma Cauchy_Bseq: "Cauchy X ==> Bseq X"
       
   871 apply (simp add: Cauchy_def)
       
   872 apply (drule spec, drule mp, rule zero_less_one, safe)
       
   873 apply (drule_tac x="M" in spec, simp)
       
   874 apply (drule lemmaCauchy)
       
   875 apply (rule_tac k="M" in Bseq_offset)
       
   876 apply (simp add: Bseq_def)
       
   877 apply (rule_tac x="1 + norm (X M)" in exI)
       
   878 apply (rule conjI, rule order_less_le_trans [OF zero_less_one], simp)
       
   879 apply (simp add: order_less_imp_le)
       
   880 done
       
   881 
       
   882 subsubsection {* Cauchy Sequences are Convergent *}
       
   883 
       
   884 axclass banach \<subseteq> real_normed_vector
       
   885   Cauchy_convergent: "Cauchy X \<Longrightarrow> convergent X"
       
   886 
       
   887 theorem LIMSEQ_imp_Cauchy:
       
   888   assumes X: "X ----> a" shows "Cauchy X"
       
   889 proof (rule CauchyI)
       
   890   fix e::real assume "0 < e"
       
   891   hence "0 < e/2" by simp
       
   892   with X have "\<exists>N. \<forall>n\<ge>N. norm (X n - a) < e/2" by (rule LIMSEQ_D)
       
   893   then obtain N where N: "\<forall>n\<ge>N. norm (X n - a) < e/2" ..
       
   894   show "\<exists>N. \<forall>m\<ge>N. \<forall>n\<ge>N. norm (X m - X n) < e"
       
   895   proof (intro exI allI impI)
       
   896     fix m assume "N \<le> m"
       
   897     hence m: "norm (X m - a) < e/2" using N by fast
       
   898     fix n assume "N \<le> n"
       
   899     hence n: "norm (X n - a) < e/2" using N by fast
       
   900     have "norm (X m - X n) = norm ((X m - a) - (X n - a))" by simp
       
   901     also have "\<dots> \<le> norm (X m - a) + norm (X n - a)"
       
   902       by (rule norm_triangle_ineq4)
       
   903     also from m n have "\<dots> < e" by(simp add:field_simps)
       
   904     finally show "norm (X m - X n) < e" .
       
   905   qed
       
   906 qed
       
   907 
       
   908 lemma convergent_Cauchy: "convergent X \<Longrightarrow> Cauchy X"
       
   909 unfolding convergent_def
       
   910 by (erule exE, erule LIMSEQ_imp_Cauchy)
       
   911 
       
   912 text {*
       
   913 Proof that Cauchy sequences converge based on the one from
       
   914 http://pirate.shu.edu/~wachsmut/ira/numseq/proofs/cauconv.html
       
   915 *}
       
   916 
       
   917 text {*
       
   918   If sequence @{term "X"} is Cauchy, then its limit is the lub of
       
   919   @{term "{r::real. \<exists>N. \<forall>n\<ge>N. r < X n}"}
       
   920 *}
       
   921 
       
   922 lemma isUb_UNIV_I: "(\<And>y. y \<in> S \<Longrightarrow> y \<le> u) \<Longrightarrow> isUb UNIV S u"
       
   923 by (simp add: isUbI setleI)
       
   924 
       
   925 lemma real_abs_diff_less_iff:
       
   926   "(\<bar>x - a\<bar> < (r::real)) = (a - r < x \<and> x < a + r)"
       
   927 by auto
       
   928 
       
   929 locale real_Cauchy =
       
   930   fixes X :: "nat \<Rightarrow> real"
       
   931   assumes X: "Cauchy X"
       
   932   fixes S :: "real set"
       
   933   defines S_def: "S \<equiv> {x::real. \<exists>N. \<forall>n\<ge>N. x < X n}"
       
   934 
       
   935 lemma real_CauchyI:
       
   936   assumes "Cauchy X"
       
   937   shows "real_Cauchy X"
       
   938   proof qed (fact assms)
       
   939 
       
   940 lemma (in real_Cauchy) mem_S: "\<forall>n\<ge>N. x < X n \<Longrightarrow> x \<in> S"
       
   941 by (unfold S_def, auto)
       
   942 
       
   943 lemma (in real_Cauchy) bound_isUb:
       
   944   assumes N: "\<forall>n\<ge>N. X n < x"
       
   945   shows "isUb UNIV S x"
       
   946 proof (rule isUb_UNIV_I)
       
   947   fix y::real assume "y \<in> S"
       
   948   hence "\<exists>M. \<forall>n\<ge>M. y < X n"
       
   949     by (simp add: S_def)
       
   950   then obtain M where "\<forall>n\<ge>M. y < X n" ..
       
   951   hence "y < X (max M N)" by simp
       
   952   also have "\<dots> < x" using N by simp
       
   953   finally show "y \<le> x"
       
   954     by (rule order_less_imp_le)
       
   955 qed
       
   956 
       
   957 lemma (in real_Cauchy) isLub_ex: "\<exists>u. isLub UNIV S u"
       
   958 proof (rule reals_complete)
       
   959   obtain N where "\<forall>m\<ge>N. \<forall>n\<ge>N. norm (X m - X n) < 1"
       
   960     using CauchyD [OF X zero_less_one] by fast
       
   961   hence N: "\<forall>n\<ge>N. norm (X n - X N) < 1" by simp
       
   962   show "\<exists>x. x \<in> S"
       
   963   proof
       
   964     from N have "\<forall>n\<ge>N. X N - 1 < X n"
       
   965       by (simp add: real_abs_diff_less_iff)
       
   966     thus "X N - 1 \<in> S" by (rule mem_S)
       
   967   qed
       
   968   show "\<exists>u. isUb UNIV S u"
       
   969   proof
       
   970     from N have "\<forall>n\<ge>N. X n < X N + 1"
       
   971       by (simp add: real_abs_diff_less_iff)
       
   972     thus "isUb UNIV S (X N + 1)"
       
   973       by (rule bound_isUb)
       
   974   qed
       
   975 qed
       
   976 
       
   977 lemma (in real_Cauchy) isLub_imp_LIMSEQ:
       
   978   assumes x: "isLub UNIV S x"
       
   979   shows "X ----> x"
       
   980 proof (rule LIMSEQ_I)
       
   981   fix r::real assume "0 < r"
       
   982   hence r: "0 < r/2" by simp
       
   983   obtain N where "\<forall>n\<ge>N. \<forall>m\<ge>N. norm (X n - X m) < r/2"
       
   984     using CauchyD [OF X r] by fast
       
   985   hence "\<forall>n\<ge>N. norm (X n - X N) < r/2" by simp
       
   986   hence N: "\<forall>n\<ge>N. X N - r/2 < X n \<and> X n < X N + r/2"
       
   987     by (simp only: real_norm_def real_abs_diff_less_iff)
       
   988 
       
   989   from N have "\<forall>n\<ge>N. X N - r/2 < X n" by fast
       
   990   hence "X N - r/2 \<in> S" by (rule mem_S)
       
   991   hence 1: "X N - r/2 \<le> x" using x isLub_isUb isUbD by fast
       
   992 
       
   993   from N have "\<forall>n\<ge>N. X n < X N + r/2" by fast
       
   994   hence "isUb UNIV S (X N + r/2)" by (rule bound_isUb)
       
   995   hence 2: "x \<le> X N + r/2" using x isLub_le_isUb by fast
       
   996 
       
   997   show "\<exists>N. \<forall>n\<ge>N. norm (X n - x) < r"
       
   998   proof (intro exI allI impI)
       
   999     fix n assume n: "N \<le> n"
       
  1000     from N n have "X n < X N + r/2" and "X N - r/2 < X n" by simp+
       
  1001     thus "norm (X n - x) < r" using 1 2
       
  1002       by (simp add: real_abs_diff_less_iff)
       
  1003   qed
       
  1004 qed
       
  1005 
       
  1006 lemma (in real_Cauchy) LIMSEQ_ex: "\<exists>x. X ----> x"
       
  1007 proof -
       
  1008   obtain x where "isLub UNIV S x"
       
  1009     using isLub_ex by fast
       
  1010   hence "X ----> x"
       
  1011     by (rule isLub_imp_LIMSEQ)
       
  1012   thus ?thesis ..
       
  1013 qed
       
  1014 
       
  1015 lemma real_Cauchy_convergent:
       
  1016   fixes X :: "nat \<Rightarrow> real"
       
  1017   shows "Cauchy X \<Longrightarrow> convergent X"
       
  1018 unfolding convergent_def
       
  1019 by (rule real_Cauchy.LIMSEQ_ex)
       
  1020  (rule real_CauchyI)
       
  1021 
       
  1022 instance real :: banach
       
  1023 by intro_classes (rule real_Cauchy_convergent)
       
  1024 
       
  1025 lemma Cauchy_convergent_iff:
       
  1026   fixes X :: "nat \<Rightarrow> 'a::banach"
       
  1027   shows "Cauchy X = convergent X"
       
  1028 by (fast intro: Cauchy_convergent convergent_Cauchy)
       
  1029 
       
  1030 
       
  1031 subsection {* Power Sequences *}
       
  1032 
       
  1033 text{*The sequence @{term "x^n"} tends to 0 if @{term "0\<le>x"} and @{term
       
  1034 "x<1"}.  Proof will use (NS) Cauchy equivalence for convergence and
       
  1035   also fact that bounded and monotonic sequence converges.*}
       
  1036 
       
  1037 lemma Bseq_realpow: "[| 0 \<le> (x::real); x \<le> 1 |] ==> Bseq (%n. x ^ n)"
       
  1038 apply (simp add: Bseq_def)
       
  1039 apply (rule_tac x = 1 in exI)
       
  1040 apply (simp add: power_abs)
       
  1041 apply (auto dest: power_mono)
       
  1042 done
       
  1043 
       
  1044 lemma monoseq_realpow: "[| 0 \<le> x; x \<le> 1 |] ==> monoseq (%n. x ^ n)"
       
  1045 apply (clarify intro!: mono_SucI2)
       
  1046 apply (cut_tac n = n and N = "Suc n" and a = x in power_decreasing, auto)
       
  1047 done
       
  1048 
       
  1049 lemma convergent_realpow:
       
  1050   "[| 0 \<le> (x::real); x \<le> 1 |] ==> convergent (%n. x ^ n)"
       
  1051 by (blast intro!: Bseq_monoseq_convergent Bseq_realpow monoseq_realpow)
       
  1052 
       
  1053 lemma LIMSEQ_inverse_realpow_zero_lemma:
       
  1054   fixes x :: real
       
  1055   assumes x: "0 \<le> x"
       
  1056   shows "real n * x + 1 \<le> (x + 1) ^ n"
       
  1057 apply (induct n)
       
  1058 apply simp
       
  1059 apply simp
       
  1060 apply (rule order_trans)
       
  1061 prefer 2
       
  1062 apply (erule mult_left_mono)
       
  1063 apply (rule add_increasing [OF x], simp)
       
  1064 apply (simp add: real_of_nat_Suc)
       
  1065 apply (simp add: ring_distribs)
       
  1066 apply (simp add: mult_nonneg_nonneg x)
       
  1067 done
       
  1068 
       
  1069 lemma LIMSEQ_inverse_realpow_zero:
       
  1070   "1 < (x::real) \<Longrightarrow> (\<lambda>n. inverse (x ^ n)) ----> 0"
       
  1071 proof (rule LIMSEQ_inverse_zero [rule_format])
       
  1072   fix y :: real
       
  1073   assume x: "1 < x"
       
  1074   hence "0 < x - 1" by simp
       
  1075   hence "\<forall>y. \<exists>N::nat. y < real N * (x - 1)"
       
  1076     by (rule reals_Archimedean3)
       
  1077   hence "\<exists>N::nat. y < real N * (x - 1)" ..
       
  1078   then obtain N::nat where "y < real N * (x - 1)" ..
       
  1079   also have "\<dots> \<le> real N * (x - 1) + 1" by simp
       
  1080   also have "\<dots> \<le> (x - 1 + 1) ^ N"
       
  1081     by (rule LIMSEQ_inverse_realpow_zero_lemma, cut_tac x, simp)
       
  1082   also have "\<dots> = x ^ N" by simp
       
  1083   finally have "y < x ^ N" .
       
  1084   hence "\<forall>n\<ge>N. y < x ^ n"
       
  1085     apply clarify
       
  1086     apply (erule order_less_le_trans)
       
  1087     apply (erule power_increasing)
       
  1088     apply (rule order_less_imp_le [OF x])
       
  1089     done
       
  1090   thus "\<exists>N. \<forall>n\<ge>N. y < x ^ n" ..
       
  1091 qed
       
  1092 
       
  1093 lemma LIMSEQ_realpow_zero:
       
  1094   "\<lbrakk>0 \<le> (x::real); x < 1\<rbrakk> \<Longrightarrow> (\<lambda>n. x ^ n) ----> 0"
       
  1095 proof (cases)
       
  1096   assume "x = 0"
       
  1097   hence "(\<lambda>n. x ^ Suc n) ----> 0" by (simp add: LIMSEQ_const)
       
  1098   thus ?thesis by (rule LIMSEQ_imp_Suc)
       
  1099 next
       
  1100   assume "0 \<le> x" and "x \<noteq> 0"
       
  1101   hence x0: "0 < x" by simp
       
  1102   assume x1: "x < 1"
       
  1103   from x0 x1 have "1 < inverse x"
       
  1104     by (rule real_inverse_gt_one)
       
  1105   hence "(\<lambda>n. inverse (inverse x ^ n)) ----> 0"
       
  1106     by (rule LIMSEQ_inverse_realpow_zero)
       
  1107   thus ?thesis by (simp add: power_inverse)
       
  1108 qed
       
  1109 
       
  1110 lemma LIMSEQ_power_zero:
       
  1111   fixes x :: "'a::{real_normed_algebra_1,recpower}"
       
  1112   shows "norm x < 1 \<Longrightarrow> (\<lambda>n. x ^ n) ----> 0"
       
  1113 apply (drule LIMSEQ_realpow_zero [OF norm_ge_zero])
       
  1114 apply (simp only: LIMSEQ_Zseq_iff, erule Zseq_le)
       
  1115 apply (simp add: power_abs norm_power_ineq)
       
  1116 done
       
  1117 
       
  1118 lemma LIMSEQ_divide_realpow_zero:
       
  1119   "1 < (x::real) ==> (%n. a / (x ^ n)) ----> 0"
       
  1120 apply (cut_tac a = a and x1 = "inverse x" in
       
  1121         LIMSEQ_mult [OF LIMSEQ_const LIMSEQ_realpow_zero])
       
  1122 apply (auto simp add: divide_inverse power_inverse)
       
  1123 apply (simp add: inverse_eq_divide pos_divide_less_eq)
       
  1124 done
       
  1125 
       
  1126 text{*Limit of @{term "c^n"} for @{term"\<bar>c\<bar> < 1"}*}
       
  1127 
       
  1128 lemma LIMSEQ_rabs_realpow_zero: "\<bar>c\<bar> < (1::real) ==> (%n. \<bar>c\<bar> ^ n) ----> 0"
       
  1129 by (rule LIMSEQ_realpow_zero [OF abs_ge_zero])
       
  1130 
       
  1131 lemma LIMSEQ_rabs_realpow_zero2: "\<bar>c\<bar> < (1::real) ==> (%n. c ^ n) ----> 0"
       
  1132 apply (rule LIMSEQ_rabs_zero [THEN iffD1])
       
  1133 apply (auto intro: LIMSEQ_rabs_realpow_zero simp add: power_abs)
       
  1134 done
       
  1135 
       
  1136 end