src/HOL/Multivariate_Analysis/Weierstrass_Theorems.thy
changeset 63627 6ddb43c6b711
parent 63626 44ce6b524ff3
child 63631 2edc8da89edc
child 63633 2accfb71e33b
equal deleted inserted replaced
63626:44ce6b524ff3 63627:6ddb43c6b711
     1 section \<open>The Bernstein-Weierstrass and Stone-Weierstrass Theorems\<close>
       
     2 
       
     3 text\<open>By L C Paulson (2015)\<close>
       
     4 
       
     5 theory Weierstrass_Theorems
       
     6 imports Uniform_Limit Path_Connected
       
     7 begin
       
     8 
       
     9 subsection \<open>Bernstein polynomials\<close>
       
    10 
       
    11 definition Bernstein :: "[nat,nat,real] \<Rightarrow> real" where
       
    12   "Bernstein n k x \<equiv> of_nat (n choose k) * x ^ k * (1 - x) ^ (n - k)"
       
    13 
       
    14 lemma Bernstein_nonneg: "\<lbrakk>0 \<le> x; x \<le> 1\<rbrakk> \<Longrightarrow> 0 \<le> Bernstein n k x"
       
    15   by (simp add: Bernstein_def)
       
    16 
       
    17 lemma Bernstein_pos: "\<lbrakk>0 < x; x < 1; k \<le> n\<rbrakk> \<Longrightarrow> 0 < Bernstein n k x"
       
    18   by (simp add: Bernstein_def)
       
    19 
       
    20 lemma sum_Bernstein [simp]: "(\<Sum> k = 0..n. Bernstein n k x) = 1"
       
    21   using binomial_ring [of x "1-x" n]
       
    22   by (simp add: Bernstein_def)
       
    23 
       
    24 lemma binomial_deriv1:
       
    25     "(\<Sum>k=0..n. (of_nat k * of_nat (n choose k)) * a^(k-1) * b^(n-k)) = real_of_nat n * (a+b) ^ (n-1)"
       
    26   apply (rule DERIV_unique [where f = "\<lambda>a. (a+b)^n" and x=a])
       
    27   apply (subst binomial_ring)
       
    28   apply (rule derivative_eq_intros setsum.cong | simp)+
       
    29   done
       
    30 
       
    31 lemma binomial_deriv2:
       
    32     "(\<Sum>k=0..n. (of_nat k * of_nat (k-1) * of_nat (n choose k)) * a^(k-2) * b^(n-k)) =
       
    33      of_nat n * of_nat (n-1) * (a+b::real) ^ (n-2)"
       
    34   apply (rule DERIV_unique [where f = "\<lambda>a. of_nat n * (a+b::real) ^ (n-1)" and x=a])
       
    35   apply (subst binomial_deriv1 [symmetric])
       
    36   apply (rule derivative_eq_intros setsum.cong | simp add: Num.numeral_2_eq_2)+
       
    37   done
       
    38 
       
    39 lemma sum_k_Bernstein [simp]: "(\<Sum>k = 0..n. real k * Bernstein n k x) = of_nat n * x"
       
    40   apply (subst binomial_deriv1 [of n x "1-x", simplified, symmetric])
       
    41   apply (simp add: setsum_left_distrib)
       
    42   apply (auto simp: Bernstein_def algebra_simps realpow_num_eq_if intro!: setsum.cong)
       
    43   done
       
    44 
       
    45 lemma sum_kk_Bernstein [simp]: "(\<Sum> k = 0..n. real k * (real k - 1) * Bernstein n k x) = real n * (real n - 1) * x\<^sup>2"
       
    46 proof -
       
    47   have "(\<Sum> k = 0..n. real k * (real k - 1) * Bernstein n k x) = real_of_nat n * real_of_nat (n - Suc 0) * x\<^sup>2"
       
    48     apply (subst binomial_deriv2 [of n x "1-x", simplified, symmetric])
       
    49     apply (simp add: setsum_left_distrib)
       
    50     apply (rule setsum.cong [OF refl])
       
    51     apply (simp add: Bernstein_def power2_eq_square algebra_simps)
       
    52     apply (rename_tac k)
       
    53     apply (subgoal_tac "k = 0 \<or> k = 1 \<or> (\<exists>k'. k = Suc (Suc k'))")
       
    54     apply (force simp add: field_simps of_nat_Suc power2_eq_square)
       
    55     by presburger
       
    56   also have "... = n * (n - 1) * x\<^sup>2"
       
    57     by auto
       
    58   finally show ?thesis
       
    59     by auto
       
    60 qed
       
    61 
       
    62 subsection \<open>Explicit Bernstein version of the 1D Weierstrass approximation theorem\<close>
       
    63 
       
    64 lemma Bernstein_Weierstrass:
       
    65   fixes f :: "real \<Rightarrow> real"
       
    66   assumes contf: "continuous_on {0..1} f" and e: "0 < e"
       
    67     shows "\<exists>N. \<forall>n x. N \<le> n \<and> x \<in> {0..1}
       
    68                     \<longrightarrow> \<bar>f x - (\<Sum>k = 0..n. f(k/n) * Bernstein n k x)\<bar> < e"
       
    69 proof -
       
    70   have "bounded (f ` {0..1})"
       
    71     using compact_continuous_image compact_imp_bounded contf by blast
       
    72   then obtain M where M: "\<And>x. 0 \<le> x \<Longrightarrow> x \<le> 1 \<Longrightarrow> \<bar>f x\<bar> \<le> M"
       
    73     by (force simp add: bounded_iff)
       
    74   then have Mge0: "0 \<le> M" by force
       
    75   have ucontf: "uniformly_continuous_on {0..1} f"
       
    76     using compact_uniformly_continuous contf by blast
       
    77   then obtain d where d: "d>0" "\<And>x x'. \<lbrakk> x \<in> {0..1}; x' \<in> {0..1}; \<bar>x' - x\<bar> < d\<rbrakk> \<Longrightarrow> \<bar>f x' - f x\<bar> < e/2"
       
    78      apply (rule uniformly_continuous_onE [where e = "e/2"])
       
    79      using e by (auto simp: dist_norm)
       
    80   { fix n::nat and x::real
       
    81     assume n: "Suc (nat\<lceil>4*M/(e*d\<^sup>2)\<rceil>) \<le> n" and x: "0 \<le> x" "x \<le> 1"
       
    82     have "0 < n" using n by simp
       
    83     have ed0: "- (e * d\<^sup>2) < 0"
       
    84       using e \<open>0<d\<close> by simp
       
    85     also have "... \<le> M * 4"
       
    86       using \<open>0\<le>M\<close> by simp
       
    87     finally have [simp]: "real_of_int (nat \<lceil>4 * M / (e * d\<^sup>2)\<rceil>) = real_of_int \<lceil>4 * M / (e * d\<^sup>2)\<rceil>"
       
    88       using \<open>0\<le>M\<close> e \<open>0<d\<close>
       
    89       by (simp add: of_nat_Suc field_simps)
       
    90     have "4*M/(e*d\<^sup>2) + 1 \<le> real (Suc (nat\<lceil>4*M/(e*d\<^sup>2)\<rceil>))"
       
    91       by (simp add: of_nat_Suc real_nat_ceiling_ge)
       
    92     also have "... \<le> real n"
       
    93       using n by (simp add: of_nat_Suc field_simps)
       
    94     finally have nbig: "4*M/(e*d\<^sup>2) + 1 \<le> real n" .
       
    95     have sum_bern: "(\<Sum>k = 0..n. (x - k/n)\<^sup>2 * Bernstein n k x) = x * (1 - x) / n"
       
    96     proof -
       
    97       have *: "\<And>a b x::real. (a - b)\<^sup>2 * x = a * (a - 1) * x + (1 - 2 * b) * a * x + b * b * x"
       
    98         by (simp add: algebra_simps power2_eq_square)
       
    99       have "(\<Sum> k = 0..n. (k - n * x)\<^sup>2 * Bernstein n k x) = n * x * (1 - x)"
       
   100         apply (simp add: * setsum.distrib)
       
   101         apply (simp add: setsum_right_distrib [symmetric] mult.assoc)
       
   102         apply (simp add: algebra_simps power2_eq_square)
       
   103         done
       
   104       then have "(\<Sum> k = 0..n. (k - n * x)\<^sup>2 * Bernstein n k x)/n^2 = x * (1 - x) / n"
       
   105         by (simp add: power2_eq_square)
       
   106       then show ?thesis
       
   107         using n by (simp add: setsum_divide_distrib divide_simps mult.commute power2_commute)
       
   108     qed
       
   109     { fix k
       
   110       assume k: "k \<le> n"
       
   111       then have kn: "0 \<le> k / n" "k / n \<le> 1"
       
   112         by (auto simp: divide_simps)
       
   113       consider (lessd) "\<bar>x - k / n\<bar> < d" | (ged) "d \<le> \<bar>x - k / n\<bar>"
       
   114         by linarith
       
   115       then have "\<bar>(f x - f (k/n))\<bar> \<le> e/2 + 2 * M / d\<^sup>2 * (x - k/n)\<^sup>2"
       
   116       proof cases
       
   117         case lessd
       
   118         then have "\<bar>(f x - f (k/n))\<bar> < e/2"
       
   119           using d x kn by (simp add: abs_minus_commute)
       
   120         also have "... \<le> (e/2 + 2 * M / d\<^sup>2 * (x - k/n)\<^sup>2)"
       
   121           using Mge0 d by simp
       
   122         finally show ?thesis by simp
       
   123       next
       
   124         case ged
       
   125         then have dle: "d\<^sup>2 \<le> (x - k/n)\<^sup>2"
       
   126           by (metis d(1) less_eq_real_def power2_abs power_mono)
       
   127         have "\<bar>(f x - f (k/n))\<bar> \<le> \<bar>f x\<bar> + \<bar>f (k/n)\<bar>"
       
   128           by (rule abs_triangle_ineq4)
       
   129         also have "... \<le> M+M"
       
   130           by (meson M add_mono_thms_linordered_semiring(1) kn x)
       
   131         also have "... \<le> 2 * M * ((x - k/n)\<^sup>2 / d\<^sup>2)"
       
   132           apply simp
       
   133           apply (rule Rings.ordered_semiring_class.mult_left_mono [of 1 "((x - k/n)\<^sup>2 / d\<^sup>2)", simplified])
       
   134           using dle \<open>d>0\<close> \<open>M\<ge>0\<close> by auto
       
   135         also have "... \<le> e/2 + 2 * M / d\<^sup>2 * (x - k/n)\<^sup>2"
       
   136           using e  by simp
       
   137         finally show ?thesis .
       
   138         qed
       
   139     } note * = this
       
   140     have "\<bar>f x - (\<Sum> k = 0..n. f(k / n) * Bernstein n k x)\<bar> \<le> \<bar>\<Sum> k = 0..n. (f x - f(k / n)) * Bernstein n k x\<bar>"
       
   141       by (simp add: setsum_subtractf setsum_right_distrib [symmetric] algebra_simps)
       
   142     also have "... \<le> (\<Sum> k = 0..n. (e/2 + (2 * M / d\<^sup>2) * (x - k / n)\<^sup>2) * Bernstein n k x)"
       
   143       apply (rule order_trans [OF setsum_abs setsum_mono])
       
   144       using *
       
   145       apply (simp add: abs_mult Bernstein_nonneg x mult_right_mono)
       
   146       done
       
   147     also have "... \<le> e/2 + (2 * M) / (d\<^sup>2 * n)"
       
   148       apply (simp only: setsum.distrib Rings.semiring_class.distrib_right setsum_right_distrib [symmetric] mult.assoc sum_bern)
       
   149       using \<open>d>0\<close> x
       
   150       apply (simp add: divide_simps Mge0 mult_le_one mult_left_le)
       
   151       done
       
   152     also have "... < e"
       
   153       apply (simp add: field_simps)
       
   154       using \<open>d>0\<close> nbig e \<open>n>0\<close>
       
   155       apply (simp add: divide_simps algebra_simps)
       
   156       using ed0 by linarith
       
   157     finally have "\<bar>f x - (\<Sum>k = 0..n. f (real k / real n) * Bernstein n k x)\<bar> < e" .
       
   158   }
       
   159   then show ?thesis
       
   160     by auto
       
   161 qed
       
   162 
       
   163 
       
   164 subsection \<open>General Stone-Weierstrass theorem\<close>
       
   165 
       
   166 text\<open>Source:
       
   167 Bruno Brosowski and Frank Deutsch.
       
   168 An Elementary Proof of the Stone-Weierstrass Theorem.
       
   169 Proceedings of the American Mathematical Society
       
   170 Volume 81, Number 1, January 1981.
       
   171 DOI: 10.2307/2043993  http://www.jstor.org/stable/2043993\<close>
       
   172 
       
   173 locale function_ring_on =
       
   174   fixes R :: "('a::t2_space \<Rightarrow> real) set" and s :: "'a set"
       
   175   assumes compact: "compact s"
       
   176   assumes continuous: "f \<in> R \<Longrightarrow> continuous_on s f"
       
   177   assumes add: "f \<in> R \<Longrightarrow> g \<in> R \<Longrightarrow> (\<lambda>x. f x + g x) \<in> R"
       
   178   assumes mult: "f \<in> R \<Longrightarrow> g \<in> R \<Longrightarrow> (\<lambda>x. f x * g x) \<in> R"
       
   179   assumes const: "(\<lambda>_. c) \<in> R"
       
   180   assumes separable: "x \<in> s \<Longrightarrow> y \<in> s \<Longrightarrow> x \<noteq> y \<Longrightarrow> \<exists>f\<in>R. f x \<noteq> f y"
       
   181 
       
   182 begin
       
   183   lemma minus: "f \<in> R \<Longrightarrow> (\<lambda>x. - f x) \<in> R"
       
   184     by (frule mult [OF const [of "-1"]]) simp
       
   185 
       
   186   lemma diff: "f \<in> R \<Longrightarrow> g \<in> R \<Longrightarrow> (\<lambda>x. f x - g x) \<in> R"
       
   187     unfolding diff_conv_add_uminus by (metis add minus)
       
   188 
       
   189   lemma power: "f \<in> R \<Longrightarrow> (\<lambda>x. f x ^ n) \<in> R"
       
   190     by (induct n) (auto simp: const mult)
       
   191 
       
   192   lemma setsum: "\<lbrakk>finite I; \<And>i. i \<in> I \<Longrightarrow> f i \<in> R\<rbrakk> \<Longrightarrow> (\<lambda>x. \<Sum>i \<in> I. f i x) \<in> R"
       
   193     by (induct I rule: finite_induct; simp add: const add)
       
   194 
       
   195   lemma setprod: "\<lbrakk>finite I; \<And>i. i \<in> I \<Longrightarrow> f i \<in> R\<rbrakk> \<Longrightarrow> (\<lambda>x. \<Prod>i \<in> I. f i x) \<in> R"
       
   196     by (induct I rule: finite_induct; simp add: const mult)
       
   197 
       
   198   definition normf :: "('a::t2_space \<Rightarrow> real) \<Rightarrow> real"
       
   199     where "normf f \<equiv> SUP x:s. \<bar>f x\<bar>"
       
   200 
       
   201   lemma normf_upper: "\<lbrakk>continuous_on s f; x \<in> s\<rbrakk> \<Longrightarrow> \<bar>f x\<bar> \<le> normf f"
       
   202     apply (simp add: normf_def)
       
   203     apply (rule cSUP_upper, assumption)
       
   204     by (simp add: bounded_imp_bdd_above compact compact_continuous_image compact_imp_bounded continuous_on_rabs)
       
   205 
       
   206   lemma normf_least: "s \<noteq> {} \<Longrightarrow> (\<And>x. x \<in> s \<Longrightarrow> \<bar>f x\<bar> \<le> M) \<Longrightarrow> normf f \<le> M"
       
   207     by (simp add: normf_def cSUP_least)
       
   208 
       
   209 end
       
   210 
       
   211 lemma (in function_ring_on) one:
       
   212   assumes U: "open U" and t0: "t0 \<in> s" "t0 \<in> U" and t1: "t1 \<in> s-U"
       
   213     shows "\<exists>V. open V \<and> t0 \<in> V \<and> s \<inter> V \<subseteq> U \<and>
       
   214                (\<forall>e>0. \<exists>f \<in> R. f ` s \<subseteq> {0..1} \<and> (\<forall>t \<in> s \<inter> V. f t < e) \<and> (\<forall>t \<in> s - U. f t > 1 - e))"
       
   215 proof -
       
   216   have "\<exists>pt \<in> R. pt t0 = 0 \<and> pt t > 0 \<and> pt ` s \<subseteq> {0..1}" if t: "t \<in> s - U" for t
       
   217   proof -
       
   218     have "t \<noteq> t0" using t t0 by auto
       
   219     then obtain g where g: "g \<in> R" "g t \<noteq> g t0"
       
   220       using separable t0  by (metis Diff_subset subset_eq t)
       
   221     define h where [abs_def]: "h x = g x - g t0" for x
       
   222     have "h \<in> R"
       
   223       unfolding h_def by (fast intro: g const diff)
       
   224     then have hsq: "(\<lambda>w. (h w)\<^sup>2) \<in> R"
       
   225       by (simp add: power2_eq_square mult)
       
   226     have "h t \<noteq> h t0"
       
   227       by (simp add: h_def g)
       
   228     then have "h t \<noteq> 0"
       
   229       by (simp add: h_def)
       
   230     then have ht2: "0 < (h t)^2"
       
   231       by simp
       
   232     also have "... \<le> normf (\<lambda>w. (h w)\<^sup>2)"
       
   233       using t normf_upper [where x=t] continuous [OF hsq] by force
       
   234     finally have nfp: "0 < normf (\<lambda>w. (h w)\<^sup>2)" .
       
   235     define p where [abs_def]: "p x = (1 / normf (\<lambda>w. (h w)\<^sup>2)) * (h x)^2" for x
       
   236     have "p \<in> R"
       
   237       unfolding p_def by (fast intro: hsq const mult)
       
   238     moreover have "p t0 = 0"
       
   239       by (simp add: p_def h_def)
       
   240     moreover have "p t > 0"
       
   241       using nfp ht2 by (simp add: p_def)
       
   242     moreover have "\<And>x. x \<in> s \<Longrightarrow> p x \<in> {0..1}"
       
   243       using nfp normf_upper [OF continuous [OF hsq] ] by (auto simp: p_def)
       
   244     ultimately show "\<exists>pt \<in> R. pt t0 = 0 \<and> pt t > 0 \<and> pt ` s \<subseteq> {0..1}"
       
   245       by auto
       
   246   qed
       
   247   then obtain pf where pf: "\<And>t. t \<in> s-U \<Longrightarrow> pf t \<in> R \<and> pf t t0 = 0 \<and> pf t t > 0"
       
   248                    and pf01: "\<And>t. t \<in> s-U \<Longrightarrow> pf t ` s \<subseteq> {0..1}"
       
   249     by metis
       
   250   have com_sU: "compact (s-U)"
       
   251     using compact closed_Int_compact U by (simp add: Diff_eq compact_Int_closed open_closed)
       
   252   have "\<And>t. t \<in> s-U \<Longrightarrow> \<exists>A. open A \<and> A \<inter> s = {x\<in>s. 0 < pf t x}"
       
   253     apply (rule open_Collect_positive)
       
   254     by (metis pf continuous)
       
   255   then obtain Uf where Uf: "\<And>t. t \<in> s-U \<Longrightarrow> open (Uf t) \<and> (Uf t) \<inter> s = {x\<in>s. 0 < pf t x}"
       
   256     by metis
       
   257   then have open_Uf: "\<And>t. t \<in> s-U \<Longrightarrow> open (Uf t)"
       
   258     by blast
       
   259   have tUft: "\<And>t. t \<in> s-U \<Longrightarrow> t \<in> Uf t"
       
   260     using pf Uf by blast
       
   261   then have *: "s-U \<subseteq> (\<Union>x \<in> s-U. Uf x)"
       
   262     by blast
       
   263   obtain subU where subU: "subU \<subseteq> s - U" "finite subU" "s - U \<subseteq> (\<Union>x \<in> subU. Uf x)"
       
   264     by (blast intro: that open_Uf compactE_image [OF com_sU _ *])
       
   265   then have [simp]: "subU \<noteq> {}"
       
   266     using t1 by auto
       
   267   then have cardp: "card subU > 0" using subU
       
   268     by (simp add: card_gt_0_iff)
       
   269   define p where [abs_def]: "p x = (1 / card subU) * (\<Sum>t \<in> subU. pf t x)" for x
       
   270   have pR: "p \<in> R"
       
   271     unfolding p_def using subU pf by (fast intro: pf const mult setsum)
       
   272   have pt0 [simp]: "p t0 = 0"
       
   273     using subU pf by (auto simp: p_def intro: setsum.neutral)
       
   274   have pt_pos: "p t > 0" if t: "t \<in> s-U" for t
       
   275   proof -
       
   276     obtain i where i: "i \<in> subU" "t \<in> Uf i" using subU t by blast
       
   277     show ?thesis
       
   278       using subU i t
       
   279       apply (clarsimp simp: p_def divide_simps)
       
   280       apply (rule setsum_pos2 [OF \<open>finite subU\<close>])
       
   281       using Uf t pf01 apply auto
       
   282       apply (force elim!: subsetCE)
       
   283       done
       
   284   qed
       
   285   have p01: "p x \<in> {0..1}" if t: "x \<in> s" for x
       
   286   proof -
       
   287     have "0 \<le> p x"
       
   288       using subU cardp t
       
   289       apply (simp add: p_def divide_simps setsum_nonneg)
       
   290       apply (rule setsum_nonneg)
       
   291       using pf01 by force
       
   292     moreover have "p x \<le> 1"
       
   293       using subU cardp t
       
   294       apply (simp add: p_def divide_simps setsum_nonneg)
       
   295       apply (rule setsum_bounded_above [where 'a=real and K=1, simplified])
       
   296       using pf01 by force
       
   297     ultimately show ?thesis
       
   298       by auto
       
   299   qed
       
   300   have "compact (p ` (s-U))"
       
   301     by (meson Diff_subset com_sU compact_continuous_image continuous continuous_on_subset pR)
       
   302   then have "open (- (p ` (s-U)))"
       
   303     by (simp add: compact_imp_closed open_Compl)
       
   304   moreover have "0 \<in> - (p ` (s-U))"
       
   305     by (metis (no_types) ComplI image_iff not_less_iff_gr_or_eq pt_pos)
       
   306   ultimately obtain delta0 where delta0: "delta0 > 0" "ball 0 delta0 \<subseteq> - (p ` (s-U))"
       
   307     by (auto simp: elim!: openE)
       
   308   then have pt_delta: "\<And>x. x \<in> s-U \<Longrightarrow> p x \<ge> delta0"
       
   309     by (force simp: ball_def dist_norm dest: p01)
       
   310   define \<delta> where "\<delta> = delta0/2"
       
   311   have "delta0 \<le> 1" using delta0 p01 [of t1] t1
       
   312       by (force simp: ball_def dist_norm dest: p01)
       
   313   with delta0 have \<delta>01: "0 < \<delta>" "\<delta> < 1"
       
   314     by (auto simp: \<delta>_def)
       
   315   have pt_\<delta>: "\<And>x. x \<in> s-U \<Longrightarrow> p x \<ge> \<delta>"
       
   316     using pt_delta delta0 by (force simp: \<delta>_def)
       
   317   have "\<exists>A. open A \<and> A \<inter> s = {x\<in>s. p x < \<delta>/2}"
       
   318     by (rule open_Collect_less_Int [OF continuous [OF pR] continuous_on_const])
       
   319   then obtain V where V: "open V" "V \<inter> s = {x\<in>s. p x < \<delta>/2}"
       
   320     by blast
       
   321   define k where "k = nat\<lfloor>1/\<delta>\<rfloor> + 1"
       
   322   have "k>0"  by (simp add: k_def)
       
   323   have "k-1 \<le> 1/\<delta>"
       
   324     using \<delta>01 by (simp add: k_def)
       
   325   with \<delta>01 have "k \<le> (1+\<delta>)/\<delta>"
       
   326     by (auto simp: algebra_simps add_divide_distrib)
       
   327   also have "... < 2/\<delta>"
       
   328     using \<delta>01 by (auto simp: divide_simps)
       
   329   finally have k2\<delta>: "k < 2/\<delta>" .
       
   330   have "1/\<delta> < k"
       
   331     using \<delta>01 unfolding k_def by linarith
       
   332   with \<delta>01 k2\<delta> have k\<delta>: "1 < k*\<delta>" "k*\<delta> < 2"
       
   333     by (auto simp: divide_simps)
       
   334   define q where [abs_def]: "q n t = (1 - p t ^ n) ^ (k^n)" for n t
       
   335   have qR: "q n \<in> R" for n
       
   336     by (simp add: q_def const diff power pR)
       
   337   have q01: "\<And>n t. t \<in> s \<Longrightarrow> q n t \<in> {0..1}"
       
   338     using p01 by (simp add: q_def power_le_one algebra_simps)
       
   339   have qt0 [simp]: "\<And>n. n>0 \<Longrightarrow> q n t0 = 1"
       
   340     using t0 pf by (simp add: q_def power_0_left)
       
   341   { fix t and n::nat
       
   342     assume t: "t \<in> s \<inter> V"
       
   343     with \<open>k>0\<close> V have "k * p t < k * \<delta> / 2"
       
   344        by force
       
   345     then have "1 - (k * \<delta> / 2)^n \<le> 1 - (k * p t)^n"
       
   346       using  \<open>k>0\<close> p01 t by (simp add: power_mono)
       
   347     also have "... \<le> q n t"
       
   348       using Bernoulli_inequality [of "- ((p t)^n)" "k^n"]
       
   349       apply (simp add: q_def)
       
   350       by (metis IntE atLeastAtMost_iff p01 power_le_one power_mult_distrib t)
       
   351     finally have "1 - (k * \<delta> / 2) ^ n \<le> q n t" .
       
   352   } note limitV = this
       
   353   { fix t and n::nat
       
   354     assume t: "t \<in> s - U"
       
   355     with \<open>k>0\<close> U have "k * \<delta> \<le> k * p t"
       
   356       by (simp add: pt_\<delta>)
       
   357     with k\<delta> have kpt: "1 < k * p t"
       
   358       by (blast intro: less_le_trans)
       
   359     have ptn_pos: "0 < p t ^ n"
       
   360       using pt_pos [OF t] by simp
       
   361     have ptn_le: "p t ^ n \<le> 1"
       
   362       by (meson DiffE atLeastAtMost_iff p01 power_le_one t)
       
   363     have "q n t = (1/(k^n * (p t)^n)) * (1 - p t ^ n) ^ (k^n) * k^n * (p t)^n"
       
   364       using pt_pos [OF t] \<open>k>0\<close> by (simp add: q_def)
       
   365     also have "... \<le> (1/(k * (p t))^n) * (1 - p t ^ n) ^ (k^n) * (1 + k^n * (p t)^n)"
       
   366       using pt_pos [OF t] \<open>k>0\<close>
       
   367       apply simp
       
   368       apply (simp only: times_divide_eq_right [symmetric])
       
   369       apply (rule mult_left_mono [of "1::real", simplified])
       
   370       apply (simp_all add: power_mult_distrib)
       
   371       apply (rule zero_le_power)
       
   372       using ptn_le by linarith
       
   373     also have "... \<le> (1/(k * (p t))^n) * (1 - p t ^ n) ^ (k^n) * (1 + (p t)^n) ^ (k^n)"
       
   374       apply (rule mult_left_mono [OF Bernoulli_inequality [of "p t ^ n" "k^n"]])
       
   375       using \<open>k>0\<close> ptn_pos ptn_le
       
   376       apply (auto simp: power_mult_distrib)
       
   377       done
       
   378     also have "... = (1/(k * (p t))^n) * (1 - p t ^ (2*n)) ^ (k^n)"
       
   379       using pt_pos [OF t] \<open>k>0\<close>
       
   380       by (simp add: algebra_simps power_mult power2_eq_square power_mult_distrib [symmetric])
       
   381     also have "... \<le> (1/(k * (p t))^n) * 1"
       
   382       apply (rule mult_left_mono [OF power_le_one])
       
   383       using pt_pos \<open>k>0\<close> p01 power_le_one t apply auto
       
   384       done
       
   385     also have "... \<le> (1 / (k*\<delta>))^n"
       
   386       using \<open>k>0\<close> \<delta>01  power_mono pt_\<delta> t
       
   387       by (fastforce simp: field_simps)
       
   388     finally have "q n t \<le> (1 / (real k * \<delta>)) ^ n " .
       
   389   } note limitNonU = this
       
   390   define NN
       
   391     where "NN e = 1 + nat \<lceil>max (ln e / ln (real k * \<delta> / 2)) (- ln e / ln (real k * \<delta>))\<rceil>" for e
       
   392   have NN: "of_nat (NN e) > ln e / ln (real k * \<delta> / 2)"  "of_nat (NN e) > - ln e / ln (real k * \<delta>)"
       
   393               if "0<e" for e
       
   394       unfolding NN_def  by linarith+
       
   395   have NN1: "\<And>e. e>0 \<Longrightarrow> (k * \<delta> / 2)^NN e < e"
       
   396     apply (subst Transcendental.ln_less_cancel_iff [symmetric])
       
   397       prefer 3 apply (subst ln_realpow)
       
   398     using \<open>k>0\<close> \<open>\<delta>>0\<close> NN  k\<delta>
       
   399     apply (force simp add: field_simps)+
       
   400     done
       
   401   have NN0: "\<And>e. e>0 \<Longrightarrow> (1/(k*\<delta>))^NN e < e"
       
   402     apply (subst Transcendental.ln_less_cancel_iff [symmetric])
       
   403       prefer 3 apply (subst ln_realpow)
       
   404     using \<open>k>0\<close> \<open>\<delta>>0\<close> NN k\<delta>
       
   405     apply (force simp add: field_simps ln_div)+
       
   406     done
       
   407   { fix t and e::real
       
   408     assume "e>0"
       
   409     have "t \<in> s \<inter> V \<Longrightarrow> 1 - q (NN e) t < e" "t \<in> s - U \<Longrightarrow> q (NN e) t < e"
       
   410     proof -
       
   411       assume t: "t \<in> s \<inter> V"
       
   412       show "1 - q (NN e) t < e"
       
   413         by (metis add.commute diff_le_eq not_le limitV [OF t] less_le_trans [OF NN1 [OF \<open>e>0\<close>]])
       
   414     next
       
   415       assume t: "t \<in> s - U"
       
   416       show "q (NN e) t < e"
       
   417       using  limitNonU [OF t] less_le_trans [OF NN0 [OF \<open>e>0\<close>]] not_le by blast
       
   418     qed
       
   419   } then have "\<And>e. e > 0 \<Longrightarrow> \<exists>f\<in>R. f ` s \<subseteq> {0..1} \<and> (\<forall>t \<in> s \<inter> V. f t < e) \<and> (\<forall>t \<in> s - U. 1 - e < f t)"
       
   420     using q01
       
   421     by (rule_tac x="\<lambda>x. 1 - q (NN e) x" in bexI) (auto simp: algebra_simps intro: diff const qR)
       
   422   moreover have t0V: "t0 \<in> V"  "s \<inter> V \<subseteq> U"
       
   423     using pt_\<delta> t0 U V \<delta>01  by fastforce+
       
   424   ultimately show ?thesis using V t0V
       
   425     by blast
       
   426 qed
       
   427 
       
   428 text\<open>Non-trivial case, with @{term A} and @{term B} both non-empty\<close>
       
   429 lemma (in function_ring_on) two_special:
       
   430   assumes A: "closed A" "A \<subseteq> s" "a \<in> A"
       
   431       and B: "closed B" "B \<subseteq> s" "b \<in> B"
       
   432       and disj: "A \<inter> B = {}"
       
   433       and e: "0 < e" "e < 1"
       
   434     shows "\<exists>f \<in> R. f ` s \<subseteq> {0..1} \<and> (\<forall>x \<in> A. f x < e) \<and> (\<forall>x \<in> B. f x > 1 - e)"
       
   435 proof -
       
   436   { fix w
       
   437     assume "w \<in> A"
       
   438     then have "open ( - B)" "b \<in> s" "w \<notin> B" "w \<in> s"
       
   439       using assms by auto
       
   440     then have "\<exists>V. open V \<and> w \<in> V \<and> s \<inter> V \<subseteq> -B \<and>
       
   441                (\<forall>e>0. \<exists>f \<in> R. f ` s \<subseteq> {0..1} \<and> (\<forall>x \<in> s \<inter> V. f x < e) \<and> (\<forall>x \<in> s \<inter> B. f x > 1 - e))"
       
   442       using one [of "-B" w b] assms \<open>w \<in> A\<close> by simp
       
   443   }
       
   444   then obtain Vf where Vf:
       
   445          "\<And>w. w \<in> A \<Longrightarrow> open (Vf w) \<and> w \<in> Vf w \<and> s \<inter> Vf w \<subseteq> -B \<and>
       
   446                          (\<forall>e>0. \<exists>f \<in> R. f ` s \<subseteq> {0..1} \<and> (\<forall>x \<in> s \<inter> Vf w. f x < e) \<and> (\<forall>x \<in> s \<inter> B. f x > 1 - e))"
       
   447     by metis
       
   448   then have open_Vf: "\<And>w. w \<in> A \<Longrightarrow> open (Vf w)"
       
   449     by blast
       
   450   have tVft: "\<And>w. w \<in> A \<Longrightarrow> w \<in> Vf w"
       
   451     using Vf by blast
       
   452   then have setsum_max_0: "A \<subseteq> (\<Union>x \<in> A. Vf x)"
       
   453     by blast
       
   454   have com_A: "compact A" using A
       
   455     by (metis compact compact_Int_closed inf.absorb_iff2)
       
   456   obtain subA where subA: "subA \<subseteq> A" "finite subA" "A \<subseteq> (\<Union>x \<in> subA. Vf x)"
       
   457     by (blast intro: that open_Vf compactE_image [OF com_A _ setsum_max_0])
       
   458   then have [simp]: "subA \<noteq> {}"
       
   459     using \<open>a \<in> A\<close> by auto
       
   460   then have cardp: "card subA > 0" using subA
       
   461     by (simp add: card_gt_0_iff)
       
   462   have "\<And>w. w \<in> A \<Longrightarrow> \<exists>f \<in> R. f ` s \<subseteq> {0..1} \<and> (\<forall>x \<in> s \<inter> Vf w. f x < e / card subA) \<and> (\<forall>x \<in> s \<inter> B. f x > 1 - e / card subA)"
       
   463     using Vf e cardp by simp
       
   464   then obtain ff where ff:
       
   465          "\<And>w. w \<in> A \<Longrightarrow> ff w \<in> R \<and> ff w ` s \<subseteq> {0..1} \<and>
       
   466                          (\<forall>x \<in> s \<inter> Vf w. ff w x < e / card subA) \<and> (\<forall>x \<in> s \<inter> B. ff w x > 1 - e / card subA)"
       
   467     by metis
       
   468   define pff where [abs_def]: "pff x = (\<Prod>w \<in> subA. ff w x)" for x
       
   469   have pffR: "pff \<in> R"
       
   470     unfolding pff_def using subA ff by (auto simp: intro: setprod)
       
   471   moreover
       
   472   have pff01: "pff x \<in> {0..1}" if t: "x \<in> s" for x
       
   473   proof -
       
   474     have "0 \<le> pff x"
       
   475       using subA cardp t
       
   476       apply (simp add: pff_def divide_simps setsum_nonneg)
       
   477       apply (rule Groups_Big.linordered_semidom_class.setprod_nonneg)
       
   478       using ff by fastforce
       
   479     moreover have "pff x \<le> 1"
       
   480       using subA cardp t
       
   481       apply (simp add: pff_def divide_simps setsum_nonneg)
       
   482       apply (rule setprod_mono [where g = "\<lambda>x. 1", simplified])
       
   483       using ff by fastforce
       
   484     ultimately show ?thesis
       
   485       by auto
       
   486   qed
       
   487   moreover
       
   488   { fix v x
       
   489     assume v: "v \<in> subA" and x: "x \<in> Vf v" "x \<in> s"
       
   490     from subA v have "pff x = ff v x * (\<Prod>w \<in> subA - {v}. ff w x)"
       
   491       unfolding pff_def  by (metis setprod.remove)
       
   492     also have "... \<le> ff v x * 1"
       
   493       apply (rule Rings.ordered_semiring_class.mult_left_mono)
       
   494       apply (rule setprod_mono [where g = "\<lambda>x. 1", simplified])
       
   495       using ff [THEN conjunct2, THEN conjunct1] v subA x
       
   496       apply auto
       
   497       apply (meson atLeastAtMost_iff contra_subsetD imageI)
       
   498       apply (meson atLeastAtMost_iff contra_subsetD image_eqI)
       
   499       using atLeastAtMost_iff by blast
       
   500     also have "... < e / card subA"
       
   501       using ff [THEN conjunct2, THEN conjunct2, THEN conjunct1] v subA x
       
   502       by auto
       
   503     also have "... \<le> e"
       
   504       using cardp e by (simp add: divide_simps)
       
   505     finally have "pff x < e" .
       
   506   }
       
   507   then have "\<And>x. x \<in> A \<Longrightarrow> pff x < e"
       
   508     using A Vf subA by (metis UN_E contra_subsetD)
       
   509   moreover
       
   510   { fix x
       
   511     assume x: "x \<in> B"
       
   512     then have "x \<in> s"
       
   513       using B by auto
       
   514     have "1 - e \<le> (1 - e / card subA) ^ card subA"
       
   515       using Bernoulli_inequality [of "-e / card subA" "card subA"] e cardp
       
   516       by (auto simp: field_simps)
       
   517     also have "... = (\<Prod>w \<in> subA. 1 - e / card subA)"
       
   518       by (simp add: setprod_constant subA(2))
       
   519     also have "... < pff x"
       
   520       apply (simp add: pff_def)
       
   521       apply (rule setprod_mono_strict [where f = "\<lambda>x. 1 - e / card subA", simplified])
       
   522       apply (simp_all add: subA(2))
       
   523       apply (intro ballI conjI)
       
   524       using e apply (force simp: divide_simps)
       
   525       using ff [THEN conjunct2, THEN conjunct2, THEN conjunct2] subA B x
       
   526       apply blast
       
   527       done
       
   528     finally have "1 - e < pff x" .
       
   529   }
       
   530   ultimately
       
   531   show ?thesis by blast
       
   532 qed
       
   533 
       
   534 lemma (in function_ring_on) two:
       
   535   assumes A: "closed A" "A \<subseteq> s"
       
   536       and B: "closed B" "B \<subseteq> s"
       
   537       and disj: "A \<inter> B = {}"
       
   538       and e: "0 < e" "e < 1"
       
   539     shows "\<exists>f \<in> R. f ` s \<subseteq> {0..1} \<and> (\<forall>x \<in> A. f x < e) \<and> (\<forall>x \<in> B. f x > 1 - e)"
       
   540 proof (cases "A \<noteq> {} \<and> B \<noteq> {}")
       
   541   case True then show ?thesis
       
   542     apply (simp add: ex_in_conv [symmetric])
       
   543     using assms
       
   544     apply safe
       
   545     apply (force simp add: intro!: two_special)
       
   546     done
       
   547 next
       
   548   case False with e show ?thesis
       
   549     apply simp
       
   550     apply (erule disjE)
       
   551     apply (rule_tac [2] x="\<lambda>x. 0" in bexI)
       
   552     apply (rule_tac x="\<lambda>x. 1" in bexI)
       
   553     apply (auto simp: const)
       
   554     done
       
   555 qed
       
   556 
       
   557 text\<open>The special case where @{term f} is non-negative and @{term"e<1/3"}\<close>
       
   558 lemma (in function_ring_on) Stone_Weierstrass_special:
       
   559   assumes f: "continuous_on s f" and fpos: "\<And>x. x \<in> s \<Longrightarrow> f x \<ge> 0"
       
   560       and e: "0 < e" "e < 1/3"
       
   561   shows "\<exists>g \<in> R. \<forall>x\<in>s. \<bar>f x - g x\<bar> < 2*e"
       
   562 proof -
       
   563   define n where "n = 1 + nat \<lceil>normf f / e\<rceil>"
       
   564   define A where "A j = {x \<in> s. f x \<le> (j - 1/3)*e}" for j :: nat
       
   565   define B where "B j = {x \<in> s. f x \<ge> (j + 1/3)*e}" for j :: nat
       
   566   have ngt: "(n-1) * e \<ge> normf f" "n\<ge>1"
       
   567     using e
       
   568     apply (simp_all add: n_def field_simps of_nat_Suc)
       
   569     by (metis real_nat_ceiling_ge mult.commute not_less pos_less_divide_eq)
       
   570   then have ge_fx: "(n-1) * e \<ge> f x" if "x \<in> s" for x
       
   571     using f normf_upper that by fastforce
       
   572   { fix j
       
   573     have A: "closed (A j)" "A j \<subseteq> s"
       
   574       apply (simp_all add: A_def Collect_restrict)
       
   575       apply (rule continuous_on_closed_Collect_le [OF f continuous_on_const])
       
   576       apply (simp add: compact compact_imp_closed)
       
   577       done
       
   578     have B: "closed (B j)" "B j \<subseteq> s"
       
   579       apply (simp_all add: B_def Collect_restrict)
       
   580       apply (rule continuous_on_closed_Collect_le [OF continuous_on_const f])
       
   581       apply (simp add: compact compact_imp_closed)
       
   582       done
       
   583     have disj: "(A j) \<inter> (B j) = {}"
       
   584       using e by (auto simp: A_def B_def field_simps)
       
   585     have "\<exists>f \<in> R. f ` s \<subseteq> {0..1} \<and> (\<forall>x \<in> A j. f x < e/n) \<and> (\<forall>x \<in> B j. f x > 1 - e/n)"
       
   586       apply (rule two)
       
   587       using e A B disj ngt
       
   588       apply simp_all
       
   589       done
       
   590   }
       
   591   then obtain xf where xfR: "\<And>j. xf j \<in> R" and xf01: "\<And>j. xf j ` s \<subseteq> {0..1}"
       
   592                    and xfA: "\<And>x j. x \<in> A j \<Longrightarrow> xf j x < e/n"
       
   593                    and xfB: "\<And>x j. x \<in> B j \<Longrightarrow> xf j x > 1 - e/n"
       
   594     by metis
       
   595   define g where [abs_def]: "g x = e * (\<Sum>i\<le>n. xf i x)" for x
       
   596   have gR: "g \<in> R"
       
   597     unfolding g_def by (fast intro: mult const setsum xfR)
       
   598   have gge0: "\<And>x. x \<in> s \<Longrightarrow> g x \<ge> 0"
       
   599     using e xf01 by (simp add: g_def zero_le_mult_iff image_subset_iff setsum_nonneg)
       
   600   have A0: "A 0 = {}"
       
   601     using fpos e by (fastforce simp: A_def)
       
   602   have An: "A n = s"
       
   603     using e ngt f normf_upper by (fastforce simp: A_def field_simps of_nat_diff)
       
   604   have Asub: "A j \<subseteq> A i" if "i\<ge>j" for i j
       
   605     using e that apply (clarsimp simp: A_def)
       
   606     apply (erule order_trans, simp)
       
   607     done
       
   608   { fix t
       
   609     assume t: "t \<in> s"
       
   610     define j where "j = (LEAST j. t \<in> A j)"
       
   611     have jn: "j \<le> n"
       
   612       using t An by (simp add: Least_le j_def)
       
   613     have Aj: "t \<in> A j"
       
   614       using t An by (fastforce simp add: j_def intro: LeastI)
       
   615     then have Ai: "t \<in> A i" if "i\<ge>j" for i
       
   616       using Asub [OF that] by blast
       
   617     then have fj1: "f t \<le> (j - 1/3)*e"
       
   618       by (simp add: A_def)
       
   619     then have Anj: "t \<notin> A i" if "i<j" for i
       
   620       using  Aj  \<open>i<j\<close>
       
   621       apply (simp add: j_def)
       
   622       using not_less_Least by blast
       
   623     have j1: "1 \<le> j"
       
   624       using A0 Aj j_def not_less_eq_eq by (fastforce simp add: j_def)
       
   625     then have Anj: "t \<notin> A (j-1)"
       
   626       using Least_le by (fastforce simp add: j_def)
       
   627     then have fj2: "(j - 4/3)*e < f t"
       
   628       using j1 t  by (simp add: A_def of_nat_diff)
       
   629     have ***: "xf i t \<le> e/n" if "i\<ge>j" for i
       
   630       using xfA [OF Ai] that by (simp add: less_eq_real_def)
       
   631     { fix i
       
   632       assume "i+2 \<le> j"
       
   633       then obtain d where "i+2+d = j"
       
   634         using le_Suc_ex that by blast
       
   635       then have "t \<in> B i"
       
   636         using Anj e ge_fx [OF t] \<open>1 \<le> n\<close> fpos [OF t] t
       
   637         apply (simp add: A_def B_def)
       
   638         apply (clarsimp simp add: field_simps of_nat_diff not_le of_nat_Suc)
       
   639         apply (rule order_trans [of _ "e * 2 + (e * (real d * 3) + e * (real i * 3))"])
       
   640         apply auto
       
   641         done
       
   642       then have "xf i t > 1 - e/n"
       
   643         by (rule xfB)
       
   644     } note **** = this
       
   645     have xf_le1: "\<And>i. xf i t \<le> 1"
       
   646       using xf01 t by force
       
   647     have "g t = e * (\<Sum>i<j. xf i t) + e * (\<Sum>i=j..n. xf i t)"
       
   648       using j1 jn e
       
   649       apply (simp add: g_def distrib_left [symmetric])
       
   650       apply (subst setsum.union_disjoint [symmetric])
       
   651       apply (auto simp: ivl_disj_un)
       
   652       done
       
   653     also have "... \<le> e*j + e * ((Suc n - j)*e/n)"
       
   654       apply (rule add_mono)
       
   655       apply (simp_all only: mult_le_cancel_left_pos e)
       
   656       apply (rule setsum_bounded_above [OF xf_le1, where A = "lessThan j", simplified])
       
   657       using setsum_bounded_above [of "{j..n}" "\<lambda>i. xf i t", OF ***]
       
   658       apply simp
       
   659       done
       
   660     also have "... \<le> j*e + e*(n - j + 1)*e/n "
       
   661       using \<open>1 \<le> n\<close> e  by (simp add: field_simps del: of_nat_Suc)
       
   662     also have "... \<le> j*e + e*e"
       
   663       using \<open>1 \<le> n\<close> e j1 by (simp add: field_simps del: of_nat_Suc)
       
   664     also have "... < (j + 1/3)*e"
       
   665       using e by (auto simp: field_simps)
       
   666     finally have gj1: "g t < (j + 1 / 3) * e" .
       
   667     have gj2: "(j - 4/3)*e < g t"
       
   668     proof (cases "2 \<le> j")
       
   669       case False
       
   670       then have "j=1" using j1 by simp
       
   671       with t gge0 e show ?thesis by force
       
   672     next
       
   673       case True
       
   674       then have "(j - 4/3)*e < (j-1)*e - e^2"
       
   675         using e by (auto simp: of_nat_diff algebra_simps power2_eq_square)
       
   676       also have "... < (j-1)*e - ((j - 1)/n) * e^2"
       
   677         using e True jn by (simp add: power2_eq_square field_simps)
       
   678       also have "... = e * (j-1) * (1 - e/n)"
       
   679         by (simp add: power2_eq_square field_simps)
       
   680       also have "... \<le> e * (\<Sum>i\<le>j-2. xf i t)"
       
   681         using e
       
   682         apply simp
       
   683         apply (rule order_trans [OF _ setsum_bounded_below [OF less_imp_le [OF ****]]])
       
   684         using True
       
   685         apply (simp_all add: of_nat_Suc of_nat_diff)
       
   686         done
       
   687       also have "... \<le> g t"
       
   688         using jn e
       
   689         using e xf01 t
       
   690         apply (simp add: g_def zero_le_mult_iff image_subset_iff setsum_nonneg)
       
   691         apply (rule Groups_Big.setsum_mono2, auto)
       
   692         done
       
   693       finally show ?thesis .
       
   694     qed
       
   695     have "\<bar>f t - g t\<bar> < 2 * e"
       
   696       using fj1 fj2 gj1 gj2 by (simp add: abs_less_iff field_simps)
       
   697   }
       
   698   then show ?thesis
       
   699     by (rule_tac x=g in bexI) (auto intro: gR)
       
   700 qed
       
   701 
       
   702 text\<open>The ``unpretentious'' formulation\<close>
       
   703 lemma (in function_ring_on) Stone_Weierstrass_basic:
       
   704   assumes f: "continuous_on s f" and e: "e > 0"
       
   705   shows "\<exists>g \<in> R. \<forall>x\<in>s. \<bar>f x - g x\<bar> < e"
       
   706 proof -
       
   707   have "\<exists>g \<in> R. \<forall>x\<in>s. \<bar>(f x + normf f) - g x\<bar> < 2 * min (e/2) (1/4)"
       
   708     apply (rule Stone_Weierstrass_special)
       
   709     apply (rule Limits.continuous_on_add [OF f Topological_Spaces.continuous_on_const])
       
   710     using normf_upper [OF f] apply force
       
   711     apply (simp add: e, linarith)
       
   712     done
       
   713   then obtain g where "g \<in> R" "\<forall>x\<in>s. \<bar>g x - (f x + normf f)\<bar> < e"
       
   714     by force
       
   715   then show ?thesis
       
   716     apply (rule_tac x="\<lambda>x. g x - normf f" in bexI)
       
   717     apply (auto simp: algebra_simps intro: diff const)
       
   718     done
       
   719 qed
       
   720 
       
   721 
       
   722 theorem (in function_ring_on) Stone_Weierstrass:
       
   723   assumes f: "continuous_on s f"
       
   724   shows "\<exists>F\<in>UNIV \<rightarrow> R. LIM n sequentially. F n :> uniformly_on s f"
       
   725 proof -
       
   726   { fix e::real
       
   727     assume e: "0 < e"
       
   728     then obtain N::nat where N: "0 < N" "0 < inverse N" "inverse N < e"
       
   729       by (auto simp: real_arch_inverse [of e])
       
   730     { fix n :: nat and x :: 'a and g :: "'a \<Rightarrow> real"
       
   731       assume n: "N \<le> n"  "\<forall>x\<in>s. \<bar>f x - g x\<bar> < 1 / (1 + real n)"
       
   732       assume x: "x \<in> s"
       
   733       have "\<not> real (Suc n) < inverse e"
       
   734         using \<open>N \<le> n\<close> N using less_imp_inverse_less by force
       
   735       then have "1 / (1 + real n) \<le> e"
       
   736         using e by (simp add: field_simps of_nat_Suc)
       
   737       then have "\<bar>f x - g x\<bar> < e"
       
   738         using n(2) x by auto
       
   739     } note * = this
       
   740     have "\<forall>\<^sub>F n in sequentially. \<forall>x\<in>s. \<bar>f x - (SOME g. g \<in> R \<and> (\<forall>x\<in>s. \<bar>f x - g x\<bar> < 1 / (1 + real n))) x\<bar> < e"
       
   741       apply (rule eventually_sequentiallyI [of N])
       
   742       apply (auto intro: someI2_bex [OF Stone_Weierstrass_basic [OF f]] *)
       
   743       done
       
   744   } then
       
   745   show ?thesis
       
   746     apply (rule_tac x="\<lambda>n::nat. SOME g. g \<in> R \<and> (\<forall>x\<in>s. \<bar>f x - g x\<bar> < 1 / (1 + n))" in bexI)
       
   747     prefer 2  apply (force intro: someI2_bex [OF Stone_Weierstrass_basic [OF f]])
       
   748     unfolding uniform_limit_iff
       
   749     apply (auto simp: dist_norm abs_minus_commute)
       
   750     done
       
   751 qed
       
   752 
       
   753 text\<open>A HOL Light formulation\<close>
       
   754 corollary Stone_Weierstrass_HOL:
       
   755   fixes R :: "('a::t2_space \<Rightarrow> real) set" and s :: "'a set"
       
   756   assumes "compact s"  "\<And>c. P(\<lambda>x. c::real)"
       
   757           "\<And>f. P f \<Longrightarrow> continuous_on s f"
       
   758           "\<And>f g. P(f) \<and> P(g) \<Longrightarrow> P(\<lambda>x. f x + g x)"  "\<And>f g. P(f) \<and> P(g) \<Longrightarrow> P(\<lambda>x. f x * g x)"
       
   759           "\<And>x y. x \<in> s \<and> y \<in> s \<and> ~(x = y) \<Longrightarrow> \<exists>f. P(f) \<and> ~(f x = f y)"
       
   760           "continuous_on s f"
       
   761        "0 < e"
       
   762     shows "\<exists>g. P(g) \<and> (\<forall>x \<in> s. \<bar>f x - g x\<bar> < e)"
       
   763 proof -
       
   764   interpret PR: function_ring_on "Collect P"
       
   765     apply unfold_locales
       
   766     using assms
       
   767     by auto
       
   768   show ?thesis
       
   769     using PR.Stone_Weierstrass_basic [OF \<open>continuous_on s f\<close> \<open>0 < e\<close>]
       
   770     by blast
       
   771 qed
       
   772 
       
   773 
       
   774 subsection \<open>Polynomial functions\<close>
       
   775 
       
   776 inductive real_polynomial_function :: "('a::real_normed_vector \<Rightarrow> real) \<Rightarrow> bool" where
       
   777     linear: "bounded_linear f \<Longrightarrow> real_polynomial_function f"
       
   778   | const: "real_polynomial_function (\<lambda>x. c)"
       
   779   | add:   "\<lbrakk>real_polynomial_function f; real_polynomial_function g\<rbrakk> \<Longrightarrow> real_polynomial_function (\<lambda>x. f x + g x)"
       
   780   | mult:  "\<lbrakk>real_polynomial_function f; real_polynomial_function g\<rbrakk> \<Longrightarrow> real_polynomial_function (\<lambda>x. f x * g x)"
       
   781 
       
   782 declare real_polynomial_function.intros [intro]
       
   783 
       
   784 definition polynomial_function :: "('a::real_normed_vector \<Rightarrow> 'b::real_normed_vector) \<Rightarrow> bool"
       
   785   where
       
   786    "polynomial_function p \<equiv> (\<forall>f. bounded_linear f \<longrightarrow> real_polynomial_function (f o p))"
       
   787 
       
   788 lemma real_polynomial_function_eq: "real_polynomial_function p = polynomial_function p"
       
   789 unfolding polynomial_function_def
       
   790 proof
       
   791   assume "real_polynomial_function p"
       
   792   then show " \<forall>f. bounded_linear f \<longrightarrow> real_polynomial_function (f \<circ> p)"
       
   793   proof (induction p rule: real_polynomial_function.induct)
       
   794     case (linear h) then show ?case
       
   795       by (auto simp: bounded_linear_compose real_polynomial_function.linear)
       
   796   next
       
   797     case (const h) then show ?case
       
   798       by (simp add: real_polynomial_function.const)
       
   799   next
       
   800     case (add h) then show ?case
       
   801       by (force simp add: bounded_linear_def linear_add real_polynomial_function.add)
       
   802   next
       
   803     case (mult h) then show ?case
       
   804       by (force simp add: real_bounded_linear const real_polynomial_function.mult)
       
   805   qed
       
   806 next
       
   807   assume [rule_format, OF bounded_linear_ident]: "\<forall>f. bounded_linear f \<longrightarrow> real_polynomial_function (f \<circ> p)"
       
   808   then show "real_polynomial_function p"
       
   809     by (simp add: o_def)
       
   810 qed
       
   811 
       
   812 lemma polynomial_function_const [iff]: "polynomial_function (\<lambda>x. c)"
       
   813   by (simp add: polynomial_function_def o_def const)
       
   814 
       
   815 lemma polynomial_function_bounded_linear:
       
   816   "bounded_linear f \<Longrightarrow> polynomial_function f"
       
   817   by (simp add: polynomial_function_def o_def bounded_linear_compose real_polynomial_function.linear)
       
   818 
       
   819 lemma polynomial_function_id [iff]: "polynomial_function(\<lambda>x. x)"
       
   820   by (simp add: polynomial_function_bounded_linear)
       
   821 
       
   822 lemma polynomial_function_add [intro]:
       
   823     "\<lbrakk>polynomial_function f; polynomial_function g\<rbrakk> \<Longrightarrow> polynomial_function (\<lambda>x. f x + g x)"
       
   824   by (auto simp: polynomial_function_def bounded_linear_def linear_add real_polynomial_function.add o_def)
       
   825 
       
   826 lemma polynomial_function_mult [intro]:
       
   827   assumes f: "polynomial_function f" and g: "polynomial_function g"
       
   828     shows "polynomial_function (\<lambda>x. f x *\<^sub>R g x)"
       
   829   using g
       
   830   apply (auto simp: polynomial_function_def bounded_linear_def Real_Vector_Spaces.linear.scaleR  const real_polynomial_function.mult o_def)
       
   831   apply (rule mult)
       
   832   using f
       
   833   apply (auto simp: real_polynomial_function_eq)
       
   834   done
       
   835 
       
   836 lemma polynomial_function_cmul [intro]:
       
   837   assumes f: "polynomial_function f"
       
   838     shows "polynomial_function (\<lambda>x. c *\<^sub>R f x)"
       
   839   by (rule polynomial_function_mult [OF polynomial_function_const f])
       
   840 
       
   841 lemma polynomial_function_minus [intro]:
       
   842   assumes f: "polynomial_function f"
       
   843     shows "polynomial_function (\<lambda>x. - f x)"
       
   844   using polynomial_function_cmul [OF f, of "-1"] by simp
       
   845 
       
   846 lemma polynomial_function_diff [intro]:
       
   847     "\<lbrakk>polynomial_function f; polynomial_function g\<rbrakk> \<Longrightarrow> polynomial_function (\<lambda>x. f x - g x)"
       
   848   unfolding add_uminus_conv_diff [symmetric]
       
   849   by (metis polynomial_function_add polynomial_function_minus)
       
   850 
       
   851 lemma polynomial_function_setsum [intro]:
       
   852     "\<lbrakk>finite I; \<And>i. i \<in> I \<Longrightarrow> polynomial_function (\<lambda>x. f x i)\<rbrakk> \<Longrightarrow> polynomial_function (\<lambda>x. setsum (f x) I)"
       
   853 by (induct I rule: finite_induct) auto
       
   854 
       
   855 lemma real_polynomial_function_minus [intro]:
       
   856     "real_polynomial_function f \<Longrightarrow> real_polynomial_function (\<lambda>x. - f x)"
       
   857   using polynomial_function_minus [of f]
       
   858   by (simp add: real_polynomial_function_eq)
       
   859 
       
   860 lemma real_polynomial_function_diff [intro]:
       
   861     "\<lbrakk>real_polynomial_function f; real_polynomial_function g\<rbrakk> \<Longrightarrow> real_polynomial_function (\<lambda>x. f x - g x)"
       
   862   using polynomial_function_diff [of f]
       
   863   by (simp add: real_polynomial_function_eq)
       
   864 
       
   865 lemma real_polynomial_function_setsum [intro]:
       
   866     "\<lbrakk>finite I; \<And>i. i \<in> I \<Longrightarrow> real_polynomial_function (\<lambda>x. f x i)\<rbrakk> \<Longrightarrow> real_polynomial_function (\<lambda>x. setsum (f x) I)"
       
   867   using polynomial_function_setsum [of I f]
       
   868   by (simp add: real_polynomial_function_eq)
       
   869 
       
   870 lemma real_polynomial_function_power [intro]:
       
   871     "real_polynomial_function f \<Longrightarrow> real_polynomial_function (\<lambda>x. f x ^ n)"
       
   872   by (induct n) (simp_all add: const mult)
       
   873 
       
   874 lemma real_polynomial_function_compose [intro]:
       
   875   assumes f: "polynomial_function f" and g: "real_polynomial_function g"
       
   876     shows "real_polynomial_function (g o f)"
       
   877   using g
       
   878   apply (induction g rule: real_polynomial_function.induct)
       
   879   using f
       
   880   apply (simp_all add: polynomial_function_def o_def const add mult)
       
   881   done
       
   882 
       
   883 lemma polynomial_function_compose [intro]:
       
   884   assumes f: "polynomial_function f" and g: "polynomial_function g"
       
   885     shows "polynomial_function (g o f)"
       
   886   using g real_polynomial_function_compose [OF f]
       
   887   by (auto simp: polynomial_function_def o_def)
       
   888 
       
   889 lemma setsum_max_0:
       
   890   fixes x::real (*in fact "'a::comm_ring_1"*)
       
   891   shows "(\<Sum>i = 0..max m n. x^i * (if i \<le> m then a i else 0)) = (\<Sum>i = 0..m. x^i * a i)"
       
   892 proof -
       
   893   have "(\<Sum>i = 0..max m n. x^i * (if i \<le> m then a i else 0)) = (\<Sum>i = 0..max m n. (if i \<le> m then x^i * a i else 0))"
       
   894     by (auto simp: algebra_simps intro: setsum.cong)
       
   895   also have "... = (\<Sum>i = 0..m. (if i \<le> m then x^i * a i else 0))"
       
   896     by (rule setsum.mono_neutral_right) auto
       
   897   also have "... = (\<Sum>i = 0..m. x^i * a i)"
       
   898     by (auto simp: algebra_simps intro: setsum.cong)
       
   899   finally show ?thesis .
       
   900 qed
       
   901 
       
   902 lemma real_polynomial_function_imp_setsum:
       
   903   assumes "real_polynomial_function f"
       
   904     shows "\<exists>a n::nat. f = (\<lambda>x. \<Sum>i=0..n. a i * x ^ i)"
       
   905 using assms
       
   906 proof (induct f)
       
   907   case (linear f)
       
   908   then show ?case
       
   909     apply (clarsimp simp add: real_bounded_linear)
       
   910     apply (rule_tac x="\<lambda>i. if i=0 then 0 else c" in exI)
       
   911     apply (rule_tac x=1 in exI)
       
   912     apply (simp add: mult_ac)
       
   913     done
       
   914 next
       
   915   case (const c)
       
   916   show ?case
       
   917     apply (rule_tac x="\<lambda>i. c" in exI)
       
   918     apply (rule_tac x=0 in exI)
       
   919     apply (auto simp: mult_ac of_nat_Suc)
       
   920     done
       
   921   case (add f1 f2)
       
   922   then obtain a1 n1 a2 n2 where
       
   923     "f1 = (\<lambda>x. \<Sum>i = 0..n1. a1 i * x ^ i)" "f2 = (\<lambda>x. \<Sum>i = 0..n2. a2 i * x ^ i)"
       
   924     by auto
       
   925   then show ?case
       
   926     apply (rule_tac x="\<lambda>i. (if i \<le> n1 then a1 i else 0) + (if i \<le> n2 then a2 i else 0)" in exI)
       
   927     apply (rule_tac x="max n1 n2" in exI)
       
   928     using setsum_max_0 [where m=n1 and n=n2] setsum_max_0 [where m=n2 and n=n1]
       
   929     apply (simp add: setsum.distrib algebra_simps max.commute)
       
   930     done
       
   931   case (mult f1 f2)
       
   932   then obtain a1 n1 a2 n2 where
       
   933     "f1 = (\<lambda>x. \<Sum>i = 0..n1. a1 i * x ^ i)" "f2 = (\<lambda>x. \<Sum>i = 0..n2. a2 i * x ^ i)"
       
   934     by auto
       
   935   then obtain b1 b2 where
       
   936     "f1 = (\<lambda>x. \<Sum>i = 0..n1. b1 i * x ^ i)" "f2 = (\<lambda>x. \<Sum>i = 0..n2. b2 i * x ^ i)"
       
   937     "b1 = (\<lambda>i. if i\<le>n1 then a1 i else 0)" "b2 = (\<lambda>i. if i\<le>n2 then a2 i else 0)"
       
   938     by auto
       
   939   then show ?case
       
   940     apply (rule_tac x="\<lambda>i. \<Sum>k\<le>i. b1 k * b2 (i - k)" in exI)
       
   941     apply (rule_tac x="n1+n2" in exI)
       
   942     using polynomial_product [of n1 b1 n2 b2]
       
   943     apply (simp add: Set_Interval.atLeast0AtMost)
       
   944     done
       
   945 qed
       
   946 
       
   947 lemma real_polynomial_function_iff_setsum:
       
   948      "real_polynomial_function f \<longleftrightarrow> (\<exists>a n::nat. f = (\<lambda>x. \<Sum>i=0..n. a i * x ^ i))"
       
   949   apply (rule iffI)
       
   950   apply (erule real_polynomial_function_imp_setsum)
       
   951   apply (auto simp: linear mult const real_polynomial_function_power real_polynomial_function_setsum)
       
   952   done
       
   953 
       
   954 lemma polynomial_function_iff_Basis_inner:
       
   955   fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::euclidean_space"
       
   956   shows "polynomial_function f \<longleftrightarrow> (\<forall>b\<in>Basis. real_polynomial_function (\<lambda>x. inner (f x) b))"
       
   957         (is "?lhs = ?rhs")
       
   958 unfolding polynomial_function_def
       
   959 proof (intro iffI allI impI)
       
   960   assume "\<forall>h. bounded_linear h \<longrightarrow> real_polynomial_function (h \<circ> f)"
       
   961   then show ?rhs
       
   962     by (force simp add: bounded_linear_inner_left o_def)
       
   963 next
       
   964   fix h :: "'b \<Rightarrow> real"
       
   965   assume rp: "\<forall>b\<in>Basis. real_polynomial_function (\<lambda>x. f x \<bullet> b)" and h: "bounded_linear h"
       
   966   have "real_polynomial_function (h \<circ> (\<lambda>x. \<Sum>b\<in>Basis. (f x \<bullet> b) *\<^sub>R b))"
       
   967     apply (rule real_polynomial_function_compose [OF _  linear [OF h]])
       
   968     using rp
       
   969     apply (auto simp: real_polynomial_function_eq polynomial_function_mult)
       
   970     done
       
   971   then show "real_polynomial_function (h \<circ> f)"
       
   972     by (simp add: euclidean_representation_setsum_fun)
       
   973 qed
       
   974 
       
   975 subsection \<open>Stone-Weierstrass theorem for polynomial functions\<close>
       
   976 
       
   977 text\<open>First, we need to show that they are continous, differentiable and separable.\<close>
       
   978 
       
   979 lemma continuous_real_polymonial_function:
       
   980   assumes "real_polynomial_function f"
       
   981     shows "continuous (at x) f"
       
   982 using assms
       
   983 by (induct f) (auto simp: linear_continuous_at)
       
   984 
       
   985 lemma continuous_polymonial_function:
       
   986   fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::euclidean_space"
       
   987   assumes "polynomial_function f"
       
   988     shows "continuous (at x) f"
       
   989   apply (rule euclidean_isCont)
       
   990   using assms apply (simp add: polynomial_function_iff_Basis_inner)
       
   991   apply (force dest: continuous_real_polymonial_function intro: isCont_scaleR)
       
   992   done
       
   993 
       
   994 lemma continuous_on_polymonial_function:
       
   995   fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::euclidean_space"
       
   996   assumes "polynomial_function f"
       
   997     shows "continuous_on s f"
       
   998   using continuous_polymonial_function [OF assms] continuous_at_imp_continuous_on
       
   999   by blast
       
  1000 
       
  1001 lemma has_real_derivative_polynomial_function:
       
  1002   assumes "real_polynomial_function p"
       
  1003     shows "\<exists>p'. real_polynomial_function p' \<and>
       
  1004                  (\<forall>x. (p has_real_derivative (p' x)) (at x))"
       
  1005 using assms
       
  1006 proof (induct p)
       
  1007   case (linear p)
       
  1008   then show ?case
       
  1009     by (force simp: real_bounded_linear const intro!: derivative_eq_intros)
       
  1010 next
       
  1011   case (const c)
       
  1012   show ?case
       
  1013     by (rule_tac x="\<lambda>x. 0" in exI) auto
       
  1014   case (add f1 f2)
       
  1015   then obtain p1 p2 where
       
  1016     "real_polynomial_function p1" "\<And>x. (f1 has_real_derivative p1 x) (at x)"
       
  1017     "real_polynomial_function p2" "\<And>x. (f2 has_real_derivative p2 x) (at x)"
       
  1018     by auto
       
  1019   then show ?case
       
  1020     apply (rule_tac x="\<lambda>x. p1 x + p2 x" in exI)
       
  1021     apply (auto intro!: derivative_eq_intros)
       
  1022     done
       
  1023   case (mult f1 f2)
       
  1024   then obtain p1 p2 where
       
  1025     "real_polynomial_function p1" "\<And>x. (f1 has_real_derivative p1 x) (at x)"
       
  1026     "real_polynomial_function p2" "\<And>x. (f2 has_real_derivative p2 x) (at x)"
       
  1027     by auto
       
  1028   then show ?case
       
  1029     using mult
       
  1030     apply (rule_tac x="\<lambda>x. f1 x * p2 x + f2 x * p1 x" in exI)
       
  1031     apply (auto intro!: derivative_eq_intros)
       
  1032     done
       
  1033 qed
       
  1034 
       
  1035 lemma has_vector_derivative_polynomial_function:
       
  1036   fixes p :: "real \<Rightarrow> 'a::euclidean_space"
       
  1037   assumes "polynomial_function p"
       
  1038     shows "\<exists>p'. polynomial_function p' \<and>
       
  1039                  (\<forall>x. (p has_vector_derivative (p' x)) (at x))"
       
  1040 proof -
       
  1041   { fix b :: 'a
       
  1042     assume "b \<in> Basis"
       
  1043     then
       
  1044     obtain p' where p': "real_polynomial_function p'" and pd: "\<And>x. ((\<lambda>x. p x \<bullet> b) has_real_derivative p' x) (at x)"
       
  1045       using assms [unfolded polynomial_function_iff_Basis_inner, rule_format]  \<open>b \<in> Basis\<close>
       
  1046       has_real_derivative_polynomial_function
       
  1047       by blast
       
  1048     have "\<exists>q. polynomial_function q \<and> (\<forall>x. ((\<lambda>u. (p u \<bullet> b) *\<^sub>R b) has_vector_derivative q x) (at x))"
       
  1049       apply (rule_tac x="\<lambda>x. p' x *\<^sub>R b" in exI)
       
  1050       using \<open>b \<in> Basis\<close> p'
       
  1051       apply (simp add: polynomial_function_iff_Basis_inner inner_Basis)
       
  1052       apply (auto intro: derivative_eq_intros pd)
       
  1053       done
       
  1054   }
       
  1055   then obtain qf where qf:
       
  1056       "\<And>b. b \<in> Basis \<Longrightarrow> polynomial_function (qf b)"
       
  1057       "\<And>b x. b \<in> Basis \<Longrightarrow> ((\<lambda>u. (p u \<bullet> b) *\<^sub>R b) has_vector_derivative qf b x) (at x)"
       
  1058     by metis
       
  1059   show ?thesis
       
  1060     apply (subst euclidean_representation_setsum_fun [of p, symmetric])
       
  1061     apply (rule_tac x="\<lambda>x. \<Sum>b\<in>Basis. qf b x" in exI)
       
  1062     apply (auto intro: has_vector_derivative_setsum qf)
       
  1063     done
       
  1064 qed
       
  1065 
       
  1066 lemma real_polynomial_function_separable:
       
  1067   fixes x :: "'a::euclidean_space"
       
  1068   assumes "x \<noteq> y" shows "\<exists>f. real_polynomial_function f \<and> f x \<noteq> f y"
       
  1069 proof -
       
  1070   have "real_polynomial_function (\<lambda>u. \<Sum>b\<in>Basis. (inner (x-u) b)^2)"
       
  1071     apply (rule real_polynomial_function_setsum)
       
  1072     apply (auto simp: algebra_simps real_polynomial_function_power real_polynomial_function_diff
       
  1073                  const linear bounded_linear_inner_left)
       
  1074     done
       
  1075   then show ?thesis
       
  1076     apply (intro exI conjI, assumption)
       
  1077     using assms
       
  1078     apply (force simp add: euclidean_eq_iff [of x y] setsum_nonneg_eq_0_iff algebra_simps)
       
  1079     done
       
  1080 qed
       
  1081 
       
  1082 lemma Stone_Weierstrass_real_polynomial_function:
       
  1083   fixes f :: "'a::euclidean_space \<Rightarrow> real"
       
  1084   assumes "compact s" "continuous_on s f" "0 < e"
       
  1085     shows "\<exists>g. real_polynomial_function g \<and> (\<forall>x \<in> s. \<bar>f x - g x\<bar> < e)"
       
  1086 proof -
       
  1087   interpret PR: function_ring_on "Collect real_polynomial_function"
       
  1088     apply unfold_locales
       
  1089     using assms continuous_on_polymonial_function real_polynomial_function_eq
       
  1090     apply (auto intro: real_polynomial_function_separable)
       
  1091     done
       
  1092   show ?thesis
       
  1093     using PR.Stone_Weierstrass_basic [OF \<open>continuous_on s f\<close> \<open>0 < e\<close>]
       
  1094     by blast
       
  1095 qed
       
  1096 
       
  1097 lemma Stone_Weierstrass_polynomial_function:
       
  1098   fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
       
  1099   assumes s: "compact s"
       
  1100       and f: "continuous_on s f"
       
  1101       and e: "0 < e"
       
  1102     shows "\<exists>g. polynomial_function g \<and> (\<forall>x \<in> s. norm(f x - g x) < e)"
       
  1103 proof -
       
  1104   { fix b :: 'b
       
  1105     assume "b \<in> Basis"
       
  1106     have "\<exists>p. real_polynomial_function p \<and> (\<forall>x \<in> s. \<bar>f x \<bullet> b - p x\<bar> < e / DIM('b))"
       
  1107       apply (rule exE [OF Stone_Weierstrass_real_polynomial_function [OF s _, of "\<lambda>x. f x \<bullet> b" "e / card Basis"]])
       
  1108       using e f
       
  1109       apply (auto simp: Euclidean_Space.DIM_positive intro: continuous_intros)
       
  1110       done
       
  1111   }
       
  1112   then obtain pf where pf:
       
  1113       "\<And>b. b \<in> Basis \<Longrightarrow> real_polynomial_function (pf b) \<and> (\<forall>x \<in> s. \<bar>f x \<bullet> b - pf b x\<bar> < e / DIM('b))"
       
  1114       apply (rule bchoice [rule_format, THEN exE])
       
  1115       apply assumption
       
  1116       apply (force simp add: intro: that)
       
  1117       done
       
  1118   have "polynomial_function (\<lambda>x. \<Sum>b\<in>Basis. pf b x *\<^sub>R b)"
       
  1119     using pf
       
  1120     by (simp add: polynomial_function_setsum polynomial_function_mult real_polynomial_function_eq)
       
  1121   moreover
       
  1122   { fix x
       
  1123     assume "x \<in> s"
       
  1124     have "norm (\<Sum>b\<in>Basis. (f x \<bullet> b) *\<^sub>R b - pf b x *\<^sub>R b) \<le> (\<Sum>b\<in>Basis. norm ((f x \<bullet> b) *\<^sub>R b - pf b x *\<^sub>R b))"
       
  1125       by (rule norm_setsum)
       
  1126     also have "... < of_nat DIM('b) * (e / DIM('b))"
       
  1127       apply (rule setsum_bounded_above_strict)
       
  1128       apply (simp add: Real_Vector_Spaces.scaleR_diff_left [symmetric] pf \<open>x \<in> s\<close>)
       
  1129       apply (rule DIM_positive)
       
  1130       done
       
  1131     also have "... = e"
       
  1132       using DIM_positive by (simp add: field_simps)
       
  1133     finally have "norm (\<Sum>b\<in>Basis. (f x \<bullet> b) *\<^sub>R b - pf b x *\<^sub>R b) < e" .
       
  1134   }
       
  1135   ultimately
       
  1136   show ?thesis
       
  1137     apply (subst euclidean_representation_setsum_fun [of f, symmetric])
       
  1138     apply (rule_tac x="\<lambda>x. \<Sum>b\<in>Basis. pf b x *\<^sub>R b" in exI)
       
  1139     apply (auto simp: setsum_subtractf [symmetric])
       
  1140     done
       
  1141 qed
       
  1142 
       
  1143 
       
  1144 subsection\<open>Polynomial functions as paths\<close>
       
  1145 
       
  1146 text\<open>One application is to pick a smooth approximation to a path,
       
  1147 or just pick a smooth path anyway in an open connected set\<close>
       
  1148 
       
  1149 lemma path_polynomial_function:
       
  1150     fixes g  :: "real \<Rightarrow> 'b::euclidean_space"
       
  1151     shows "polynomial_function g \<Longrightarrow> path g"
       
  1152   by (simp add: path_def continuous_on_polymonial_function)
       
  1153 
       
  1154 lemma path_approx_polynomial_function:
       
  1155     fixes g :: "real \<Rightarrow> 'b::euclidean_space"
       
  1156     assumes "path g" "0 < e"
       
  1157     shows "\<exists>p. polynomial_function p \<and>
       
  1158                 pathstart p = pathstart g \<and>
       
  1159                 pathfinish p = pathfinish g \<and>
       
  1160                 (\<forall>t \<in> {0..1}. norm(p t - g t) < e)"
       
  1161 proof -
       
  1162   obtain q where poq: "polynomial_function q" and noq: "\<And>x. x \<in> {0..1} \<Longrightarrow> norm (g x - q x) < e/4"
       
  1163     using Stone_Weierstrass_polynomial_function [of "{0..1}" g "e/4"] assms
       
  1164     by (auto simp: path_def)
       
  1165   have pf: "polynomial_function (\<lambda>t. q t + (g 0 - q 0) + t *\<^sub>R (g 1 - q 1 - (g 0 - q 0)))"
       
  1166     by (force simp add: poq)
       
  1167   have *: "\<And>t. t \<in> {0..1} \<Longrightarrow> norm (((q t - g t) + (g 0 - q 0)) + (t *\<^sub>R (g 1 - q 1) + t *\<^sub>R (q 0 - g 0))) < (e/4 + e/4) + (e/4+e/4)"
       
  1168     apply (intro Real_Vector_Spaces.norm_add_less)
       
  1169     using noq
       
  1170     apply (auto simp: norm_minus_commute intro: le_less_trans [OF mult_left_le_one_le noq] simp del: less_divide_eq_numeral1)
       
  1171     done
       
  1172   show ?thesis
       
  1173     apply (intro exI conjI)
       
  1174     apply (rule pf)
       
  1175     using *
       
  1176     apply (auto simp add: pathstart_def pathfinish_def algebra_simps)
       
  1177     done
       
  1178 qed
       
  1179 
       
  1180 lemma connected_open_polynomial_connected:
       
  1181   fixes s :: "'a::euclidean_space set"
       
  1182   assumes s: "open s" "connected s"
       
  1183       and "x \<in> s" "y \<in> s"
       
  1184     shows "\<exists>g. polynomial_function g \<and> path_image g \<subseteq> s \<and>
       
  1185                pathstart g = x \<and> pathfinish g = y"
       
  1186 proof -
       
  1187   have "path_connected s" using assms
       
  1188     by (simp add: connected_open_path_connected)
       
  1189   with \<open>x \<in> s\<close> \<open>y \<in> s\<close> obtain p where p: "path p" "path_image p \<subseteq> s" "pathstart p = x" "pathfinish p = y"
       
  1190     by (force simp: path_connected_def)
       
  1191   have "\<exists>e. 0 < e \<and> (\<forall>x \<in> path_image p. ball x e \<subseteq> s)"
       
  1192   proof (cases "s = UNIV")
       
  1193     case True then show ?thesis
       
  1194       by (simp add: gt_ex)
       
  1195   next
       
  1196     case False
       
  1197     then have "- s \<noteq> {}" by blast
       
  1198     then show ?thesis
       
  1199       apply (rule_tac x="setdist (path_image p) (-s)" in exI)
       
  1200       using s p
       
  1201       apply (simp add: setdist_gt_0_compact_closed compact_path_image open_closed)
       
  1202       using setdist_le_dist [of _ "path_image p" _ "-s"]
       
  1203       by fastforce
       
  1204   qed
       
  1205   then obtain e where "0 < e"and eb: "\<And>x. x \<in> path_image p \<Longrightarrow> ball x e \<subseteq> s"
       
  1206     by auto
       
  1207   show ?thesis
       
  1208     using path_approx_polynomial_function [OF \<open>path p\<close> \<open>0 < e\<close>]
       
  1209     apply clarify
       
  1210     apply (intro exI conjI, assumption)
       
  1211     using p
       
  1212     apply (fastforce simp add: dist_norm path_image_def norm_minus_commute intro: eb [THEN subsetD])+
       
  1213     done
       
  1214 qed
       
  1215 
       
  1216 hide_fact linear add mult const
       
  1217 
       
  1218 end