src/HOL/BNF/Examples/Stream.thy
changeset 51409 6e01fa224ad5
parent 51353 ae707530c359
child 51430 e96447ea13c9
equal deleted inserted replaced
51408:b9b273699c26 51409:6e01fa224ad5
    11 theory Stream
    11 theory Stream
    12 imports "../BNF"
    12 imports "../BNF"
    13 begin
    13 begin
    14 
    14 
    15 codata 'a stream = Stream (shd: 'a) (stl: "'a stream") (infixr "##" 65)
    15 codata 'a stream = Stream (shd: 'a) (stl: "'a stream") (infixr "##" 65)
       
    16 
       
    17 declaration {*
       
    18   Nitpick_HOL.register_codatatype
       
    19     @{typ "'stream_element_type stream"} @{const_name stream_case} [dest_Const @{term Stream}]
       
    20     (*FIXME: long type variable name required to reduce the probability of
       
    21         a name clash of Nitpick in context. E.g.:
       
    22         context
       
    23         fixes x :: 'stream_element_type
       
    24         begin
       
    25 
       
    26         lemma "stream_set s = {}"
       
    27         nitpick
       
    28         oops
       
    29 
       
    30         end
       
    31     *)
       
    32 *}
       
    33 
       
    34 code_datatype Stream
       
    35 lemmas [code] = stream.sels stream.sets stream.case
       
    36 
       
    37 lemma stream_case_cert:
       
    38   assumes "CASE \<equiv> stream_case c"
       
    39   shows "CASE (a ## s) \<equiv> c a s"
       
    40   using assms by simp_all
       
    41 
       
    42 setup {*
       
    43   Code.add_case @{thm stream_case_cert}
       
    44 *}
    16 
    45 
    17 (* TODO: Provide by the package*)
    46 (* TODO: Provide by the package*)
    18 theorem stream_set_induct:
    47 theorem stream_set_induct:
    19   "\<lbrakk>\<And>s. P (shd s) s; \<And>s y. \<lbrakk>y \<in> stream_set (stl s); P y (stl s)\<rbrakk> \<Longrightarrow> P y s\<rbrakk> \<Longrightarrow>
    48   "\<lbrakk>\<And>s. P (shd s) s; \<And>s y. \<lbrakk>y \<in> stream_set (stl s); P y (stl s)\<rbrakk> \<Longrightarrow> P y s\<rbrakk> \<Longrightarrow>
    20     \<forall>y \<in> stream_set s. P y s"
    49     \<forall>y \<in> stream_set s. P y s"
    24 lemma stream_map_simps[simp]:
    53 lemma stream_map_simps[simp]:
    25   "shd (stream_map f s) = f (shd s)" "stl (stream_map f s) = stream_map f (stl s)"
    54   "shd (stream_map f s) = f (shd s)" "stl (stream_map f s) = stream_map f (stl s)"
    26   unfolding shd_def stl_def stream_case_def stream_map_def stream.dtor_unfold
    55   unfolding shd_def stl_def stream_case_def stream_map_def stream.dtor_unfold
    27   by (case_tac [!] s) (auto simp: Stream_def stream.dtor_ctor)
    56   by (case_tac [!] s) (auto simp: Stream_def stream.dtor_ctor)
    28 
    57 
    29 lemma stream_map_Stream[simp]: "stream_map f (x ## s) = f x ## stream_map f s"
    58 lemma stream_map_Stream[simp, code]: "stream_map f (x ## s) = f x ## stream_map f s"
    30   by (metis stream.exhaust stream.sels stream_map_simps)
    59   by (metis stream.exhaust stream.sels stream_map_simps)
    31 
    60 
    32 theorem shd_stream_set: "shd s \<in> stream_set s"
    61 theorem shd_stream_set: "shd s \<in> stream_set s"
    33   by (auto simp add: shd_def stl_def stream_case_def fsts_def snds_def split_beta)
    62   by (auto simp add: shd_def stl_def stream_case_def fsts_def snds_def split_beta)
    34     (metis UnCI fsts_def insertI1 stream.dtor_set)
    63     (metis UnCI fsts_def insertI1 stream.dtor_set)
   198 lemma flat_simps[simp]:
   227 lemma flat_simps[simp]:
   199   "shd (flat ws) = hd (shd ws)"
   228   "shd (flat ws) = hd (shd ws)"
   200   "stl (flat ws) = flat (if tl (shd ws) = [] then stl ws else tl (shd ws) ## stl ws)"
   229   "stl (flat ws) = flat (if tl (shd ws) = [] then stl ws else tl (shd ws) ## stl ws)"
   201   unfolding flat_def by auto
   230   unfolding flat_def by auto
   202 
   231 
   203 lemma flat_Cons[simp]: "flat ((x # xs) ## ws) = x ## flat (if xs = [] then ws else xs ## ws)"
   232 lemma flat_Cons[simp, code]: "flat ((x # xs) ## ws) = x ## flat (if xs = [] then ws else xs ## ws)"
   204   unfolding flat_def using stream.unfold[of "hd o shd" _ "(x # xs) ## ws"] by auto
   233   unfolding flat_def using stream.unfold[of "hd o shd" _ "(x # xs) ## ws"] by auto
   205 
   234 
   206 lemma flat_Stream[simp]: "xs \<noteq> [] \<Longrightarrow> flat (xs ## ws) = xs @- flat ws"
   235 lemma flat_Stream[simp]: "xs \<noteq> [] \<Longrightarrow> flat (xs ## ws) = xs @- flat ws"
   207   by (induct xs) auto
   236   by (induct xs) auto
   208 
   237 
   261   case (2 s1 s2)
   290   case (2 s1 s2)
   262   then obtain u where "s1 = cycle u \<and> s2 = u @- cycle u \<and> u \<noteq> []" by blast
   291   then obtain u where "s1 = cycle u \<and> s2 = u @- cycle u \<and> u \<noteq> []" by blast
   263   thus ?case using stream.unfold[of hd "\<lambda>xs. tl xs @ [hd xs]" u] by (auto simp: cycle_def)
   292   thus ?case using stream.unfold[of hd "\<lambda>xs. tl xs @ [hd xs]" u] by (auto simp: cycle_def)
   264 qed auto
   293 qed auto
   265 
   294 
   266 lemma cycle_Cons: "cycle (x # xs) = x ## cycle (xs @ [x])"
   295 lemma cycle_Cons[code]: "cycle (x # xs) = x ## cycle (xs @ [x])"
   267 proof (coinduct rule: stream.coinduct[of "\<lambda>s1 s2. \<exists>x xs. s1 = cycle (x # xs) \<and> s2 = x ## cycle (xs @ [x])"])
   296 proof (coinduct rule: stream.coinduct[of "\<lambda>s1 s2. \<exists>x xs. s1 = cycle (x # xs) \<and> s2 = x ## cycle (xs @ [x])"])
   268   case (2 s1 s2)
   297   case (2 s1 s2)
   269   then obtain x xs where "s1 = cycle (x # xs) \<and> s2 = x ## cycle (xs @ [x])" by blast
   298   then obtain x xs where "s1 = cycle (x # xs) \<and> s2 = x ## cycle (xs @ [x])" by blast
   270   thus ?case
   299   thus ?case
   271     by (auto simp: cycle_def intro!: exI[of _ "hd (xs @ [x])"] exI[of _ "tl (xs @ [x])"] stream.unfold)
   300     by (auto simp: cycle_def intro!: exI[of _ "hd (xs @ [x])"] exI[of _ "tl (xs @ [x])"] stream.unfold)
   312 definition "same x = stream_unfold (\<lambda>_. x) id ()"
   341 definition "same x = stream_unfold (\<lambda>_. x) id ()"
   313 
   342 
   314 lemma same_simps[simp]: "shd (same x) = x" "stl (same x) = same x"
   343 lemma same_simps[simp]: "shd (same x) = x" "stl (same x) = same x"
   315   unfolding same_def by auto
   344   unfolding same_def by auto
   316 
   345 
   317 lemma same_unfold: "same x = Stream x (same x)"
   346 lemma same_unfold[code]: "same x = x ## same x"
   318   by (metis same_simps stream.collapse)
   347   by (metis same_simps stream.collapse)
   319 
   348 
   320 lemma snth_same[simp]: "same x !! n = x"
   349 lemma snth_same[simp]: "same x !! n = x"
   321   unfolding same_def by (induct n) auto
   350   unfolding same_def by (induct n) auto
   322 
   351 
   340 
   369 
   341 definition "fromN n = stream_unfold id Suc n"
   370 definition "fromN n = stream_unfold id Suc n"
   342 
   371 
   343 lemma fromN_simps[simp]: "shd (fromN n) = n" "stl (fromN n) = fromN (Suc n)"
   372 lemma fromN_simps[simp]: "shd (fromN n) = n" "stl (fromN n) = fromN (Suc n)"
   344   unfolding fromN_def by auto
   373   unfolding fromN_def by auto
       
   374 
       
   375 lemma fromN_unfold[code]: "fromN n = n ## fromN (Suc n)"
       
   376   unfolding fromN_def by (metis id_def stream.unfold)
   345 
   377 
   346 lemma snth_fromN[simp]: "fromN n !! m = n + m"
   378 lemma snth_fromN[simp]: "fromN n !! m = n + m"
   347   unfolding fromN_def by (induct m arbitrary: n) auto
   379   unfolding fromN_def by (induct m arbitrary: n) auto
   348 
   380 
   349 lemma stake_fromN[simp]: "stake m (fromN n) = [n ..< m + n]"
   381 lemma stake_fromN[simp]: "stake m (fromN n) = [n ..< m + n]"
   374 
   406 
   375 lemma szip_simps[simp]:
   407 lemma szip_simps[simp]:
   376   "shd (szip s1 s2) = (shd s1, shd s2)" "stl (szip s1 s2) = szip (stl s1) (stl s2)"
   408   "shd (szip s1 s2) = (shd s1, shd s2)" "stl (szip s1 s2) = szip (stl s1) (stl s2)"
   377   unfolding szip_def by auto
   409   unfolding szip_def by auto
   378 
   410 
       
   411 lemma szip_unfold[code]: "szip (Stream a s1) (Stream b s2) = Stream (a, b) (szip s1 s2)"
       
   412   unfolding szip_def by (subst stream.unfold) simp
       
   413 
   379 lemma snth_szip[simp]: "szip s1 s2 !! n = (s1 !! n, s2 !! n)"
   414 lemma snth_szip[simp]: "szip s1 s2 !! n = (s1 !! n, s2 !! n)"
   380   by (induct n arbitrary: s1 s2) auto
   415   by (induct n arbitrary: s1 s2) auto
   381 
   416 
   382 
   417 
   383 subsection {* zip via function *}
   418 subsection {* zip via function *}
   384 
   419 
   385 definition "stream_map2 f s1 s2 =
   420 definition "stream_map2 f s1 s2 =
   386   stream_unfold (\<lambda>(s1,s2). f (shd s1) (shd s2)) (map_pair stl stl) (s1, s2)"
   421   stream_unfold (\<lambda>(s1,s2). f (shd s1) (shd s2)) (map_pair stl stl) (s1, s2)"
   387 
   422 
   388 lemma stream_map2_simps[simp]:
   423 lemma stream_map2_simps[simp]:
   389  "shd (stream_map2 f s1 s2) = f (shd s1) (shd s2)"
   424   "shd (stream_map2 f s1 s2) = f (shd s1) (shd s2)"
   390  "stl (stream_map2 f s1 s2) = stream_map2 f (stl s1) (stl s2)"
   425   "stl (stream_map2 f s1 s2) = stream_map2 f (stl s1) (stl s2)"
   391   unfolding stream_map2_def by auto
   426   unfolding stream_map2_def by auto
       
   427 
       
   428 lemma stream_map2_unfold[code]:
       
   429   "stream_map2 f (Stream a s1) (Stream b s2) = Stream (f a b) (stream_map2 f s1 s2)"
       
   430   unfolding stream_map2_def by (subst stream.unfold) simp
   392 
   431 
   393 lemma stream_map2_szip:
   432 lemma stream_map2_szip:
   394   "stream_map2 f s1 s2 = stream_map (split f) (szip s1 s2)"
   433   "stream_map2 f s1 s2 = stream_map (split f) (szip s1 s2)"
   395   by (coinduct rule: stream.coinduct[of
   434   by (coinduct rule: stream.coinduct[of
   396     "\<lambda>s1 s2. \<exists>s1' s2'. s1 = stream_map2 f s1' s2' \<and> s2 = stream_map (split f) (szip s1' s2')"])
   435     "\<lambda>s1 s2. \<exists>s1' s2'. s1 = stream_map2 f s1' s2' \<and> s2 = stream_map (split f) (szip s1' s2')"])