src/HOL/Library/Parity.thy
changeset 27668 6eb20b2cecf8
parent 27651 16a26996c30e
equal deleted inserted replaced
27667:62500b980749 27668:6eb20b2cecf8
    39 lemma neq_one_mod_two [simp, presburger]: 
    39 lemma neq_one_mod_two [simp, presburger]: 
    40   "((x::int) mod 2 ~= 0) = (x mod 2 = 1)" by presburger
    40   "((x::int) mod 2 ~= 0) = (x mod 2 = 1)" by presburger
    41 
    41 
    42 
    42 
    43 subsection {* Behavior under integer arithmetic operations *}
    43 subsection {* Behavior under integer arithmetic operations *}
       
    44 declare dvd_def[algebra]
       
    45 lemma nat_even_iff_2_dvd[algebra]: "even (x::nat) \<longleftrightarrow> 2 dvd x"
       
    46   by (presburger add: even_nat_def even_def)
       
    47 lemma int_even_iff_2_dvd[algebra]: "even (x::int) \<longleftrightarrow> 2 dvd x"
       
    48   by presburger
    44 
    49 
    45 lemma even_times_anything: "even (x::int) ==> even (x * y)"
    50 lemma even_times_anything: "even (x::int) ==> even (x * y)"
    46   by (simp add: even_def zmod_zmult1_eq')
    51   by algebra
    47 
    52 
    48 lemma anything_times_even: "even (y::int) ==> even (x * y)"
    53 lemma anything_times_even: "even (y::int) ==> even (x * y)" by algebra
    49   by (simp add: even_def zmod_zmult1_eq)
    54 
    50 
    55 lemma odd_times_odd: "odd (x::int) ==> odd y ==> odd (x * y)" 
    51 lemma odd_times_odd: "odd (x::int) ==> odd y ==> odd (x * y)"
       
    52   by (simp add: even_def zmod_zmult1_eq)
    56   by (simp add: even_def zmod_zmult1_eq)
    53 
    57 
    54 lemma even_product[presburger]: "even((x::int) * y) = (even x | even y)"
    58 lemma even_product[presburger]: "even((x::int) * y) = (even x | even y)"
    55   apply (auto simp add: even_times_anything anything_times_even)
    59   apply (auto simp add: even_times_anything anything_times_even)
    56   apply (rule ccontr)
    60   apply (rule ccontr)
    69 lemma odd_plus_odd: "odd (x::int) ==> odd y ==> even (x + y)" by presburger
    73 lemma odd_plus_odd: "odd (x::int) ==> odd y ==> even (x + y)" by presburger
    70 
    74 
    71 lemma even_sum[presburger]: "even ((x::int) + y) = ((even x & even y) | (odd x & odd y))"
    75 lemma even_sum[presburger]: "even ((x::int) + y) = ((even x & even y) | (odd x & odd y))"
    72   by presburger
    76   by presburger
    73 
    77 
    74 lemma even_neg[presburger]: "even (-(x::int)) = even x" by presburger
    78 lemma even_neg[presburger, algebra]: "even (-(x::int)) = even x" by presburger
    75 
    79 
    76 lemma even_difference:
    80 lemma even_difference:
    77     "even ((x::int) - y) = ((even x & even y) | (odd x & odd y))" by presburger
    81     "even ((x::int) - y) = ((even x & even y) | (odd x & odd y))" by presburger
    78 
    82 
    79 lemma even_pow_gt_zero:
    83 lemma even_pow_gt_zero:
    80     "even (x::int) ==> 0 < n ==> even (x^n)"
    84     "even (x::int) ==> 0 < n ==> even (x^n)"
    81   by (induct n) (auto simp add: even_product)
    85   by (induct n) (auto simp add: even_product)
    82 
    86 
    83 lemma odd_pow_iff[presburger]: "odd ((x::int) ^ n) \<longleftrightarrow> (n = 0 \<or> odd x)"
    87 lemma odd_pow_iff[presburger, algebra]: 
       
    88   "odd ((x::int) ^ n) \<longleftrightarrow> (n = 0 \<or> odd x)"
    84   apply (induct n, simp_all)
    89   apply (induct n, simp_all)
    85   apply presburger
    90   apply presburger
    86   apply (case_tac n, auto)
    91   apply (case_tac n, auto)
    87   apply (simp_all add: even_product)
    92   apply (simp_all add: even_product)
    88   done
    93   done
   118 subsection {* even and odd for nats *}
   123 subsection {* even and odd for nats *}
   119 
   124 
   120 lemma pos_int_even_equiv_nat_even: "0 \<le> x ==> even x = even (nat x)"
   125 lemma pos_int_even_equiv_nat_even: "0 \<le> x ==> even x = even (nat x)"
   121   by (simp add: even_nat_def)
   126   by (simp add: even_nat_def)
   122 
   127 
   123 lemma even_nat_product[presburger]: "even((x::nat) * y) = (even x | even y)"
   128 lemma even_nat_product[presburger, algebra]: "even((x::nat) * y) = (even x | even y)"
   124   by (simp add: even_nat_def int_mult)
   129   by (simp add: even_nat_def int_mult)
   125 
   130 
   126 lemma even_nat_sum[presburger]: "even ((x::nat) + y) =
   131 lemma even_nat_sum[presburger, algebra]: "even ((x::nat) + y) =
   127     ((even x & even y) | (odd x & odd y))" by presburger
   132     ((even x & even y) | (odd x & odd y))" by presburger
   128 
   133 
   129 lemma even_nat_difference[presburger]:
   134 lemma even_nat_difference[presburger, algebra]:
   130     "even ((x::nat) - y) = (x < y | (even x & even y) | (odd x & odd y))"
   135     "even ((x::nat) - y) = (x < y | (even x & even y) | (odd x & odd y))"
   131 by presburger
   136 by presburger
   132 
   137 
   133 lemma even_nat_Suc[presburger]: "even (Suc x) = odd x" by presburger
   138 lemma even_nat_Suc[presburger, algebra]: "even (Suc x) = odd x" by presburger
   134 
   139 
   135 lemma even_nat_power[presburger]: "even ((x::nat)^y) = (even x & 0 < y)"
   140 lemma even_nat_power[presburger, algebra]: "even ((x::nat)^y) = (even x & 0 < y)"
   136   by (simp add: even_nat_def int_power)
   141   by (simp add: even_nat_def int_power)
   137 
   142 
   138 lemma even_nat_zero[presburger]: "even (0::nat)" by presburger
   143 lemma even_nat_zero[presburger]: "even (0::nat)" by presburger
   139 
   144 
   140 lemmas even_odd_nat_simps [simp] = even_nat_def[of "number_of v",standard]
   145 lemmas even_odd_nat_simps [simp] = even_nat_def[of "number_of v",standard]
   247   apply (erule zero_le_even_power)
   252   apply (erule zero_le_even_power)
   248   done
   253   done
   249 
   254 
   250 lemma zero_less_power_eq[presburger]: "(0 < (x::'a::{recpower,ordered_idom}) ^ n) =
   255 lemma zero_less_power_eq[presburger]: "(0 < (x::'a::{recpower,ordered_idom}) ^ n) =
   251     (n = 0 | (even n & x ~= 0) | (odd n & 0 < x))"
   256     (n = 0 | (even n & x ~= 0) | (odd n & 0 < x))"
   252   apply (rule iffI)
   257 
   253   apply clarsimp
   258   unfolding order_less_le zero_le_power_eq by auto
   254   apply (rule conjI)
       
   255   apply clarsimp
       
   256   apply (rule ccontr)
       
   257   apply (subgoal_tac "~ (0 <= x^n)")
       
   258   apply simp
       
   259   apply (subst zero_le_odd_power)
       
   260   apply assumption
       
   261   apply simp
       
   262   apply (rule notI)
       
   263   apply (simp add: power_0_left)
       
   264   apply (rule notI)
       
   265   apply (simp add: power_0_left)
       
   266   apply auto
       
   267   apply (subgoal_tac "0 <= x^n")
       
   268   apply (frule order_le_imp_less_or_eq)
       
   269   apply simp
       
   270   apply (erule zero_le_even_power)
       
   271   done
       
   272 
   259 
   273 lemma power_less_zero_eq[presburger]: "((x::'a::{recpower,ordered_idom}) ^ n < 0) =
   260 lemma power_less_zero_eq[presburger]: "((x::'a::{recpower,ordered_idom}) ^ n < 0) =
   274     (odd n & x < 0)" 
   261     (odd n & x < 0)"
   275   apply (subst linorder_not_le [symmetric])+
   262   apply (subst linorder_not_le [symmetric])+
   276   apply (subst zero_le_power_eq)
   263   apply (subst zero_le_power_eq)
   277   apply auto
   264   apply auto
   278   done
   265   done
   279 
   266 
   322 by arith
   309 by arith
   323 
   310 
   324 lemma div_2_gt_zero [simp]: "(1::nat) < n ==> 0 < n div 2" 
   311 lemma div_2_gt_zero [simp]: "(1::nat) < n ==> 0 < n div 2" 
   325 by arith
   312 by arith
   326 
   313 
       
   314   (* Potential use of algebra : Equality modulo n*)
   327 lemma mod_mult_self3 [simp]: "(k*n + m) mod n = m mod (n::nat)"
   315 lemma mod_mult_self3 [simp]: "(k*n + m) mod n = m mod (n::nat)"
   328 by (simp add: mult_ac add_ac)
   316 by (simp add: mult_ac add_ac)
   329 
   317 
   330 lemma mod_mult_self4 [simp]: "Suc (k*n + m) mod n = Suc m mod n"
   318 lemma mod_mult_self4 [simp]: "Suc (k*n + m) mod n = Suc m mod n"
   331 proof -
   319 proof -
   340 done
   328 done
   341 
   329 
   342 
   330 
   343 subsection {* More Even/Odd Results *}
   331 subsection {* More Even/Odd Results *}
   344  
   332  
   345 lemma even_mult_two_ex: "even(n) = (\<exists>m::nat. n = 2*m)"
   333 lemma even_mult_two_ex: "even(n) = (\<exists>m::nat. n = 2*m)" by presburger
   346 by (simp add: even_nat_equiv_def2 numeral_2_eq_2)
   334 lemma odd_Suc_mult_two_ex: "odd(n) = (\<exists>m. n = Suc (2*m))" by presburger
   347 
   335 lemma even_add [simp]: "even(m + n::nat) = (even m = even n)"  by presburger
   348 lemma odd_Suc_mult_two_ex: "odd(n) = (\<exists>m. n = Suc (2*m))"
   336 
   349 by (simp add: odd_nat_equiv_def2 numeral_2_eq_2)
   337 lemma odd_add [simp]: "odd(m + n::nat) = (odd m \<noteq> odd n)" by presburger
   350 
       
   351 lemma even_add [simp]: "even(m + n::nat) = (even m = even n)" 
       
   352 by auto
       
   353 
       
   354 lemma odd_add [simp]: "odd(m + n::nat) = (odd m \<noteq> odd n)"
       
   355 by auto
       
   356 
   338 
   357 lemma div_Suc: "Suc a div c = a div c + Suc 0 div c +
   339 lemma div_Suc: "Suc a div c = a div c + Suc 0 div c +
   358     (a mod c + Suc 0 mod c) div c" 
   340     (a mod c + Suc 0 mod c) div c" 
   359   apply (subgoal_tac "Suc a = a + Suc 0")
   341   apply (subgoal_tac "Suc a = a + Suc 0")
   360   apply (erule ssubst)
   342   apply (erule ssubst)
   361   apply (rule div_add1_eq, simp)
   343   apply (rule div_add1_eq, simp)
   362   done
   344   done
   363 
   345 
   364 lemma lemma_even_div2 [simp]: "even (n::nat) ==> (n + 1) div 2 = n div 2"
   346 lemma lemma_even_div2 [simp]: "even (n::nat) ==> (n + 1) div 2 = n div 2" by presburger
   365 apply (simp add: numeral_2_eq_2) 
       
   366 apply (subst div_Suc)  
       
   367 apply (simp add: even_nat_mod_two_eq_zero) 
       
   368 done
       
   369 
   347 
   370 lemma lemma_not_even_div2 [simp]: "~even n ==> (n + 1) div 2 = Suc (n div 2)"
   348 lemma lemma_not_even_div2 [simp]: "~even n ==> (n + 1) div 2 = Suc (n div 2)"
   371 apply (simp add: numeral_2_eq_2) 
   349 by presburger
   372 apply (subst div_Suc)  
   350 
   373 apply (simp add: odd_nat_mod_two_eq_one) 
   351 lemma even_num_iff: "0 < n ==> even n = (~ even(n - 1 :: nat))"  by presburger
   374 done
   352 lemma even_even_mod_4_iff: "even (n::nat) = even (n mod 4)" by presburger
   375 
   353 
   376 lemma even_num_iff: "0 < n ==> even n = (~ even(n - 1 :: nat))" 
   354 lemma lemma_odd_mod_4_div_2: "n mod 4 = (3::nat) ==> odd((n - 1) div 2)" by presburger
   377 by (case_tac "n", auto)
       
   378 
       
   379 lemma even_even_mod_4_iff: "even (n::nat) = even (n mod 4)"
       
   380 apply (induct n, simp)
       
   381 apply (subst mod_Suc, simp) 
       
   382 done
       
   383 
       
   384 lemma lemma_odd_mod_4_div_2: "n mod 4 = (3::nat) ==> odd((n - 1) div 2)"
       
   385 apply (rule mod_div_equality [of n 4, THEN subst])
       
   386 apply (simp add: even_num_iff)
       
   387 done
       
   388 
   355 
   389 lemma lemma_even_mod_4_div_2: "n mod 4 = (1::nat) ==> even ((n - 1) div 2)"
   356 lemma lemma_even_mod_4_div_2: "n mod 4 = (1::nat) ==> even ((n - 1) div 2)"
   390 apply (rule mod_div_equality [of n 4, THEN subst])
   357   by presburger
   391 apply simp
       
   392 done
       
   393 
   358 
   394 text {* Simplify, when the exponent is a numeral *}
   359 text {* Simplify, when the exponent is a numeral *}
   395 
   360 
   396 lemmas power_0_left_number_of = power_0_left [of "number_of w", standard]
   361 lemmas power_0_left_number_of = power_0_left [of "number_of w", standard]
   397 declare power_0_left_number_of [simp]
   362 declare power_0_left_number_of [simp]
   439 qed
   404 qed
   440 
   405 
   441 
   406 
   442 subsection {* Miscellaneous *}
   407 subsection {* Miscellaneous *}
   443 
   408 
   444 lemma odd_pos: "odd (n::nat) \<Longrightarrow> 0 < n"
   409 lemma odd_pos: "odd (n::nat) \<Longrightarrow> 0 < n" by presburger
   445   by (cases n, simp_all)
       
   446 
   410 
   447 lemma [presburger]:"(x + 1) div 2 = x div 2 \<longleftrightarrow> even (x::int)" by presburger
   411 lemma [presburger]:"(x + 1) div 2 = x div 2 \<longleftrightarrow> even (x::int)" by presburger
   448 lemma [presburger]: "(x + 1) div 2 = x div 2 + 1 \<longleftrightarrow> odd (x::int)" by presburger
   412 lemma [presburger]: "(x + 1) div 2 = x div 2 + 1 \<longleftrightarrow> odd (x::int)" by presburger
   449 lemma even_plus_one_div_two: "even (x::int) ==> (x + 1) div 2 = x div 2"  by presburger
   413 lemma even_plus_one_div_two: "even (x::int) ==> (x + 1) div 2 = x div 2"  by presburger
   450 lemma odd_plus_one_div_two: "odd (x::int) ==> (x + 1) div 2 = x div 2 + 1" by presburger
   414 lemma odd_plus_one_div_two: "odd (x::int) ==> (x + 1) div 2 = x div 2 + 1" by presburger