src/HOL/Real/HahnBanach/README.html
changeset 29354 6ef5ddf22d3a
parent 29353 3d2e35c23c66
parent 29350 c7735554d291
child 29355 642cac18e155
child 29371 bab4e907d881
equal deleted inserted replaced
29353:3d2e35c23c66 29354:6ef5ddf22d3a
     1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
       
     2 
       
     3 <!-- $Id$ -->
       
     4 
       
     5 <HTML>
       
     6 
       
     7 <HEAD>
       
     8   <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
       
     9   <TITLE>HOL/Real/HahnBanach/README</TITLE>
       
    10 </HEAD>
       
    11 
       
    12 <BODY>
       
    13 
       
    14 <H3>The Hahn-Banach Theorem for Real Vector Spaces (Isabelle/Isar)</H3>
       
    15 
       
    16 Author: Gertrud Bauer, Technische Universit&auml;t M&uuml;nchen<P>
       
    17 
       
    18 This directory contains the proof of the Hahn-Banach theorem for real vectorspaces,
       
    19 following H. Heuser, Funktionalanalysis, p. 228 -232.
       
    20 The Hahn-Banach theorem is one of the fundamental theorems of functioal analysis.
       
    21 It is a conclusion of Zorn's lemma.<P>
       
    22 
       
    23 Two different formaulations of the theorem are presented, one for general real vectorspaces
       
    24 and its application to normed vectorspaces. <P>
       
    25 
       
    26 The theorem says, that every continous linearform, defined on arbitrary subspaces
       
    27 (not only one-dimensional subspaces), can be extended to a continous linearform on
       
    28 the whole vectorspace.
       
    29 
       
    30 
       
    31 <HR>
       
    32 
       
    33 <ADDRESS>
       
    34 <A NAME="bauerg@in.tum.de" HREF="mailto:bauerg@in.tum.de">bauerg@in.tum.de</A>
       
    35 </ADDRESS>
       
    36 
       
    37 </BODY>
       
    38 </HTML>